Advertisements
Advertisements
प्रश्न
If x = 3 + 2√2, find :
(i) `1/x`
(ii) `x - 1/x`
(iii) `( x - 1/x )^3`
(iv) `x^3 - 1/x^3`
उत्तर
x = 3 + 2√2
(i) `1/x = 1/[ 3 + 2√2 ]`
= ` 1/[ 3 + 2√2 ] xx [ 3 - 2√2 ]/[ 3 - 2√2 ]`
= `[ 3 - 2√2 ]/[( 3)^2 - (2sqrt2)^2]`
= `[ 3 - 2√2 ]/[ 9 - 8 ]`
∴ `1/x = 3 - 2sqrt2 ` ....(1)
(ii) `x - 1/x = ( 3 + 2sqrt2 ) - ( 3 - 2sqrt2 )` ...[From(2)]
= `3 + 2sqrt2 - 3 + 2sqrt2`
∴ `x - 1/x = 4sqrt2` ....(2)
(iii) `( x - 1/x )^3 = (4sqrt2 )^3`
= 64 x 2√2
= 128√2
(iv) `x^3 - 1/x^3 = ( x - 1/x )^3 + 3( x - 1/x )`
= 128√2 + 3(4√2)
= 128√2 + 12√2
= 140√2
APPEARS IN
संबंधित प्रश्न
Simplify : ( x + 6 )( x + 4 )( x - 2 )
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
( 2x + 3y )( 4x2 + 6xy + 9y2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Prove that : x2+ y2 + z2 - xy - yz - zx is always positive.
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Using suitable identity, evaluate (97)3
Evaluate :
`[1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3 ]/[ 1.2 xx 1.2 xx 1.2 - 0.3 xx 0.3 xx 0.3]`