English

If X = 3 + 2√2, Find : (I) 1/X (Ii) X - 1/X (Iii) ( X - 1/X )^3 (Iv) X^3 - 1/X^3 - Mathematics

Advertisements
Advertisements

Question

If x = 3 + 2√2, find :
(i) `1/x`

(ii) `x - 1/x`

(iii) `( x - 1/x )^3`

(iv) `x^3 - 1/x^3`

Sum

Solution

x = 3 + 2√2
(i) `1/x = 1/[ 3 + 2√2 ]`

= ` 1/[ 3 + 2√2 ] xx [ 3 - 2√2 ]/[ 3 - 2√2 ]`

= `[ 3 - 2√2 ]/[( 3)^2 - (2sqrt2)^2]`

= `[ 3 - 2√2 ]/[ 9 - 8 ]`

∴ `1/x = 3 - 2sqrt2 `             ....(1)

(ii) `x - 1/x = ( 3 + 2sqrt2 ) - ( 3 - 2sqrt2 )`   ...[From(2)] 
                 = `3 + 2sqrt2 - 3 + 2sqrt2`
∴ `x - 1/x = 4sqrt2`              ....(2)

(iii) `( x - 1/x )^3 = (4sqrt2 )^3`
                          = 64 x 2√2
                          = 128√2

(iv) `x^3 - 1/x^3 = ( x - 1/x )^3 + 3( x - 1/x )`
                           = 128√2 + 3(4√2)
                           = 128√2 + 12√2
                           = 140√2

shaalaa.com
Special Product
  Is there an error in this question or solution?
Chapter 4: Expansions (Including Substitution) - Exercise 4 (E) [Page 66]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 4 Expansions (Including Substitution)
Exercise 4 (E) | Q 8 | Page 66
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×