Advertisements
Advertisements
Question
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
Solution
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
=`( 3x - 5/x )[ (3x)^2 + (3x)(5/x) + (5/x)^2 ]`
= `(3x)^3 - (5/x)^3`
= `27x^3 - 125/x^3`
APPEARS IN
RELATED QUESTIONS
Simplify : ( x + 6 )( x + 4 )( x - 2 )
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a + b)(a + b)
Find : (a + b)(a + b)(a + b)
If x = 3 + 2√2, find :
(i) `1/x`
(ii) `x - 1/x`
(iii) `( x - 1/x )^3`
(iv) `x^3 - 1/x^3`
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Using suitable identity, evaluate (104)3
Using suitable identity, evaluate (97)3
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`