Advertisements
Advertisements
Question
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Solution
a3 - 8b3 + 27c3 = a3 + (-2b)3 + (3c)3
Since a - 2b + 3c = 0, we have
a3 - 8b3 + 27c3 = a3 + (-2b)3 + (3c)3
= 3(a)( -2b)(3c)
= -18abc
APPEARS IN
RELATED QUESTIONS
Simplify : ( x - 6 )( x - 4 )( x + 2 )
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a - b)(a - b)(a - b)
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
Using suitable identity, evaluate (104)3
Simplify :
`[(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3]/[(x - y)^3 + (y - z)^3 + (z - x)^3]`
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`
Evaluate :
`[1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3 ]/[ 1.2 xx 1.2 xx 1.2 - 0.3 xx 0.3 xx 0.3]`