Advertisements
Advertisements
Question
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
Solution
x + 5y = 10
⇒ (x + 5y)3 = 103
⇒ x3 + (5y)3 + 3(x)(5y)(x + 5y) = 1000
⇒ x3 + (5y)3 + 3(x)(5y)(10) = 1000
= x3 + (5y)3 + 150xy = 1000
= x3 + (5y)3 + 150xy - 1000 = 0
APPEARS IN
RELATED QUESTIONS
Simplify : ( x - 6 )( x - 4 )( x + 2 )
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
( 2x + 3y )( 4x2 + 6xy + 9y2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a + b)(a + b)
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
If x = 3 + 2√2, find :
(i) `1/x`
(ii) `x - 1/x`
(iii) `( x - 1/x )^3`
(iv) `x^3 - 1/x^3`
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Using suitable identity, evaluate (104)3
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`