Advertisements
Advertisements
Question
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Solution
Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
(x + 6)(x - 4)(x - 2)
= x3 + (6 - 4 - 2)x2 + [6 × (-4) + (-4) × (-2) + (-2) × 6]x + 6 × (-4) × (-2)
= x3 - 0x2 + (-24 + 8 - 12)x + 48
= x3 - 28x + 48
APPEARS IN
RELATED QUESTIONS
Simplify : ( x + 6 )( x + 4 )( x - 2 )
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a + b)(a + b)
Prove that : x2+ y2 + z2 - xy - yz - zx is always positive.
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Using suitable identity, evaluate (97)3
Simplify :
`[(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3]/[(x - y)^3 + (y - z)^3 + (z - x)^3]`