Advertisements
Advertisements
Question
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Solution
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
= `(a/3 - 3b)[(a/3)^2 + (a/3)(3b) + (3b)^2]`
= `(a/3)^3 - (3b)^3`
= `a^3/27 - 27b^3`
APPEARS IN
RELATED QUESTIONS
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
Find : (a + b)(a + b)(a + b)
Prove that : x2+ y2 + z2 - xy - yz - zx is always positive.
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
Using suitable identity, evaluate (104)3
Using suitable identity, evaluate (97)3
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`
Evaluate :
`[1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3 ]/[ 1.2 xx 1.2 xx 1.2 - 0.3 xx 0.3 xx 0.3]`