Advertisements
Advertisements
प्रश्न
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
उत्तर
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
= `(a/3 - 3b)[(a/3)^2 + (a/3)(3b) + (3b)^2]`
= `(a/3)^3 - (3b)^3`
= `a^3/27 - 27b^3`
APPEARS IN
संबंधित प्रश्न
Simplify : ( x - 6 )( x - 4 )( x + 2 )
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Find : (a + b)(a + b)
Find : (a + b)(a + b)(a + b)
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Using suitable identity, evaluate (104)3
Using suitable identity, evaluate (97)3
Simplify :
`[(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3]/[(x - y)^3 + (y - z)^3 + (z - x)^3]`
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`
Evaluate :
`[1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3 ]/[ 1.2 xx 1.2 xx 1.2 - 0.3 xx 0.3 xx 0.3]`