Advertisements
Advertisements
Question
Using suitable identity, evaluate (104)3
Solution
Using identity: (a ± b)3 = a3 ± b3 ± 3ab(a ± b)
(104)3 = (100 + 4)3
= (100)3 + (4)3 + 3 × 100 × 4(100 + 4)
= 1000000 + 64 + 1200 × 104
= 1000000 + 64 + 124800
= 1124864
APPEARS IN
RELATED QUESTIONS
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
( 2x + 3y )( 4x2 + 6xy + 9y2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a + b)(a + b)
Find : (a + b)(a + b)(a + b)
Find : (a - b)(a - b)(a - b)
If x = 3 + 2√2, find :
(i) `1/x`
(ii) `x - 1/x`
(iii) `( x - 1/x )^3`
(iv) `x^3 - 1/x^3`
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`