Advertisements
Advertisements
Question
Find : (a - b)(a - b)(a - b)
Solution
(a + b)(a + b)(a + b)
= (a × a + a × b + b × a + b × b)(a + b)
= (a2 + ab + ab + b2)(a + b)
= (a2 + b2 + 2ab)(a + b)
= a2 × a + a2 × b + b2 × a + b2 × b + 2ab × a + 2ab × b
= a3 + a2 b + ab2 + b3 + 2a2b + 2ab2
= a3 + b3 + 3a2b + 3ab2
replacing b by -b, we get
= a3 + (-b)3 + 3a2(-b) + 3a(-b)2
= a3 - b3 - 3a2b + 3ab2
APPEARS IN
RELATED QUESTIONS
Simplify : ( x + 6 )( x + 4 )( x - 2 )
Simplify : ( x - 6 )( x - 4 )( x + 2 )
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Find : (a + b)(a + b)
Find : (a + b)(a + b)(a + b)
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
Using suitable identity, evaluate (104)3
Simplify :
`[(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3]/[(x - y)^3 + (y - z)^3 + (z - x)^3]`
Evaluate :
`[1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3 ]/[ 1.2 xx 1.2 xx 1.2 - 0.3 xx 0.3 xx 0.3]`