Advertisements
Advertisements
प्रश्न
Find : (a - b)(a - b)(a - b)
उत्तर
(a + b)(a + b)(a + b)
= (a × a + a × b + b × a + b × b)(a + b)
= (a2 + ab + ab + b2)(a + b)
= (a2 + b2 + 2ab)(a + b)
= a2 × a + a2 × b + b2 × a + b2 × b + 2ab × a + 2ab × b
= a3 + a2 b + ab2 + b3 + 2a2b + 2ab2
= a3 + b3 + 3a2b + 3ab2
replacing b by -b, we get
= a3 + (-b)3 + 3a2(-b) + 3a(-b)2
= a3 - b3 - 3a2b + 3ab2
APPEARS IN
संबंधित प्रश्न
Simplify : ( x + 6 )( x + 4 )( x - 2 )
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
( 2x + 3y )( 4x2 + 6xy + 9y2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a + b)(a + b)
Find : (a + b)(a + b)(a + b)
If x = 3 + 2√2, find :
(i) `1/x`
(ii) `x - 1/x`
(iii) `( x - 1/x )^3`
(iv) `x^3 - 1/x^3`
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Using suitable identity, evaluate (104)3
Using suitable identity, evaluate (97)3