Advertisements
Advertisements
प्रश्न
Simplify : ( x + 6 )( x + 4 )( x - 2 )
उत्तर
Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
(x + 6)(x + 4)(x - 2)
= x3 + (6 + 4 - 2)x2 + [6 × 4 + 4 × (-2) + (-2) × 6]x + 6 × 4 × (-2)
= x3 + 8x2 + (24 - 8 - 12)x - 48
= x3 + 8x2 + 4x - 48
APPEARS IN
संबंधित प्रश्न
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a + b)(a + b)
Find : (a + b)(a + b)(a + b)
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Using suitable identity, evaluate (104)3
Using suitable identity, evaluate (97)3
Simplify :
`[(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3]/[(x - y)^3 + (y - z)^3 + (z - x)^3]`