Advertisements
Advertisements
प्रश्न
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
उत्तर
a + b = 11 and a2 + b2 = 65
Now, (a+b)2 = a2 + b2 + 2ab
⇒ (11)2 = 65 + 2ab
⇒ 121 = 65 + 2ab
⇒ 2ab = 56
⇒ ab = 28
a3 + b3 = ( a + b )( a2 - ab + b2)
= (11)(65 - 28)
= 11 x 37
= 407
APPEARS IN
संबंधित प्रश्न
Simplify : ( x + 6 )( x + 4 )( x - 2 )
Simplify : ( x - 6 )( x - 4 )( x + 2 )
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a - b)(a - b)(a - b)
Prove that : x2+ y2 + z2 - xy - yz - zx is always positive.
Using suitable identity, evaluate (97)3
Evaluate :
`[1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3 ]/[ 1.2 xx 1.2 xx 1.2 - 0.3 xx 0.3 xx 0.3]`