मराठी

Prove That: X2+ Y2 + Z2 - Xy - Yz - Zx is Always Positive. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :  x2+ y2 + z2 - xy - yz - zx  is always positive.

बेरीज

उत्तर

x+ y+ z- xy - yz - zx

= 2(x+ y+ z- xy - yz - zx)

= 2x+ 2y+ 2z- 2xy - 2yz - 2zx

= x+ x2 + y+ y2 + z2 + z- 2xy - 2yz - 2zx

= (x2 + y2 - 2xy) + (z2 + x2 - 2zx) + (y2 + z2 - 2yz)

= (x - y)2 + (z - x)2 + (y - z)2

Since square of any number is positive, the given equation is always positive.

shaalaa.com
Special Product
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Expansions (Including Substitution) - Exercise 4 (E) [पृष्ठ ६६]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 4 Expansions (Including Substitution)
Exercise 4 (E) | Q 10 | पृष्ठ ६६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×