Advertisements
Advertisements
प्रश्न
Using suitable identity, evaluate (97)3
उत्तर
(97)3 = (100 - 3)3
= (100)3 - (3)3 - 3 × 100 × 3(100 - 3)
= 1000000 - 27 - 900 × 97
= 1000000 - 27 - 87300
= 912673
APPEARS IN
संबंधित प्रश्न
Simplify : ( x - 6 )( x - 4 )( x + 2 )
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
( 2x + 3y )( 4x2 + 6xy + 9y2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`( 3x - 5/x )( 9x^2 + 15 + 25/x^2)`
Find : (a + b)(a + b)
Find : (a + b)(a + b)(a + b)
Prove that : x2+ y2 + z2 - xy - yz - zx is always positive.
If x = 3 + 2√2, find :
(i) `1/x`
(ii) `x - 1/x`
(iii) `( x - 1/x )^3`
(iv) `x^3 - 1/x^3`
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`