Advertisements
Advertisements
प्रश्न
Simplify :
`[(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3]/[(x - y)^3 + (y - z)^3 + (z - x)^3]`
उत्तर
`[(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3]/[(x - y)^3 + (y - z)^3 + (z - x)^3]`
If a + b + c = 0, then a3 + b3 + c3 = 3abc
Now, x2 - y2 + y2 - z2 + z2 - x2 = 0
⇒ ( x2 - y2 )3 + ( y2 - z2 )3 + ( z2 - x2 )3 = 3( x2 - y2 )( y2 - z2 )( z2 -x2 ) ......(1)
And, x - y + y - z + z - x = 0
⇒ ( x - y )3 + ( y - z )3 + ( z - x )3 = 3( x - y )( y - z )( z -x ) ........(2)
Now,
`[(x^2 - y^2)^3 + (y^2 - z^2)^3 + (z^2 - x^2)^3]/[(x - y)^3 + (y - z)^3 + (z - x)^3]`
= `[3( x^2 - y^2 )( y^2 - z^2 )( z^2 -x^2 )]/[3( x - y )( y - z )( z - x )]` .....[From (1) and (2)]
= ( x + y )( y + z )( z + x )
APPEARS IN
संबंधित प्रश्न
Simplify : ( x + 6 )( x + 4 )( x - 2 )
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a + b)(a + b)
Find : (a + b)(a + b)(a + b)
Find : (a - b)(a - b)(a - b)
If x = 3 + 2√2, find :
(i) `1/x`
(ii) `x - 1/x`
(iii) `( x - 1/x )^3`
(iv) `x^3 - 1/x^3`
Using suitable identity, evaluate (104)3
Using suitable identity, evaluate (97)3
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`