Advertisements
Advertisements
Question
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Solution
Using identity :
(x + a)(x + b)(x + c) = x3 + (a + b + c)x2 + (ab + bc + ca)x + abc
( x - 6 )( x - 4 )( x - 2 )
= x3 + (-6 - 4 - 2)x2 + [-6 × (-4) + (-4) × (-2) + (-2) × (-6)]x + (-6) × (-4) × (-2)
= x3 - 12x2 + (24 + 8 + 12)x - 48
= x3 - 12x2 + 44x - 48
APPEARS IN
RELATED QUESTIONS
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
( 2x + 3y )( 4x2 + 6xy + 9y2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
`(a/3 - 3b)(a^2/9 + ab + 9b^2)`
Find : (a + b)(a + b)(a + b)
Prove that : x2+ y2 + z2 - xy - yz - zx is always positive.
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
If x = 3 + 2√2, find :
(i) `1/x`
(ii) `x - 1/x`
(iii) `( x - 1/x )^3`
(iv) `x^3 - 1/x^3`
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
If a - 2b + 3c = 0; state the value of a3 - 8b3 + 27c3.
Using suitable identity, evaluate (104)3