Advertisements
Advertisements
प्रश्न
If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre
उत्तर
The equation of the circle is
x2 + y2 − 10x = 0 ...(1)
and the equation of the line is y = 2x ...(2)
Let A(x1, y1) and B(x2, y2) be the points of intersection of circle and the line.
To find the points of intersection, substitute y = 2x in 1 equation (1), we get,
x2 + 4x2 − 10x = 0
∴ 5x2 − 10x = 0
∴ x(5x − 10) = 0
∴ x = 0 or x = 2
∴ x1 = 0 and x2 = 2
Also, y1 = 2x1 and y2 = 2x2
∴ y1 = 0 and y2 = 4
∴ A ≡ (0, 0) and B ≡ (2, 4)
∴ by diameter form, the equation of the circle on chord AB as diameter is
(x − 0)(x − 2) + (y − 0)(y − 4) = 0
∴ x2 − 2x + y2 − 4y = 0
∴ x2 + y2 − 2x − 4y = 0.
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with centre at origin and radius 4.
Find the equation of the circle with centre at (−3, −2) and radius 6.
Find the equation of the circle with centre at (–2, 3) touching the X-axis.
Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0
Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9
Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.
Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0
Find the centre and radius of the following:
x2 + y2 − 2x + 4y − 4 = 0
Find the centre and radius of the following:
x2 + y2 − 6x − 8y − 24 = 0
Show that the equation 3x2 + 3y2 + 12x + 18y − 11 = 0 represents a circle
Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic
Choose the correct alternative:
If the lines 2x − 3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 sq. units, then find the equation of the circle
Choose the correct alternative:
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle
Answer the following :
Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0
Answer the following :
Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ
Answer the following :
Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0
Answer the following :
Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively
Answer the following :
Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic
The line 2x − y + 6 = 0 meets the circle x2 + y2 + 10x + 9 = 0 at A and B. Find the equation of circle on AB as diameter.
Answer the following :
Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units
Answer the following :
Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x + 10y +20 = 0,
x2 + y2 + 8x – 6y – 24 = 0.
Answer the following :
Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x – 10y + 19 = 0,
x2 + y2 + 2x + 8y – 23 = 0.
Answer the following :
Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x – 4y – 28 = 0,
x2 + y2 – 4x – 12 = 0
Answer the following :
Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:
x2 + y2 + 4x – 12y + 4 = 0,
x2 + y2 – 2x – 4y + 4 = 0
If one of the diameters of the curve x2 + y2 - 4x - 6y + 9 = 0 is a chord of a circle with centre (1, 1), then the radius of this circle is ______
The centre of the circle x = 3 + 5 cos θ, y = - 4 + 5 sin θ, is ______
If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______
The equation of circle whose diameter is the line joining the points (–5, 3) and (13, –3) is ______.
Circle x2 + y2 – 4x = 0 touches ______.
The equation of a circle with centre at (1, 0) and circumference 10π units is ______.
Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.