हिंदी

Answer the following : Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following :

Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ

योग

उत्तर

Given, x = 3 – 4 sinθ, y = 2 – 4cosθ

∴ x – 3 –4 sinθ, y –2 =  – 4cosθ

On squaring and adding, we get

(x – 3)2 + (y – 2)2 = (–4 sinθ)2 + (–4 cosθ)2

∴ (x – 3)2 + (y – 2)2 = 16sin2θ + 16cos2θ

∴ (x – 3)2 + (y – 2)2 = 16(sin2θ + cos2θ)

∴ (x – 3)2 + (y – 2)2 = 16(1)

∴ (x – 3)2 + (y – 2)2 = 16

∴ (x – 3)2 + (y – 2)2 = 42

Comparing this equation with

(x – h)2 + (y – k)2 = r2, we get

h = 3, k = 2, r = 4

∴ Centre of the circle is (3, 2) and radius is 4.

shaalaa.com
Different Forms of Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Circle - Miscellaneous Exercise 6 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Circle
Miscellaneous Exercise 6 | Q II. (2) | पृष्ठ १३७

संबंधित प्रश्न

Find the equation of the circle with centre at origin and radius 4.


Find the equation of the circle with centre at (−3, −2) and radius 6.


Find the centre and radius of the circle:

(x − 5)2 + (y − 3)2 = 20


Find the centre and radius of the circle:

`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`


Find the equation of the circle with centre at (a, b) touching the Y-axis


Find the equation of the circle with centre at (–2, 3) touching the X-axis.


Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0


Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9


If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre


Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0


Find the centre and radius of the following:

x2 + y2 − 2x + 4y − 4 = 0


Find the centre and radius of the following:

4x2 + 4y2 − 24x − 8y − 24 = 0


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic


Choose the correct alternative:

If the lines 2x − 3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 sq. units, then find the equation of the circle


Choose the correct alternative:

If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle


Choose the correct alternative:

Area of the circle centre at (1, 2) and passing through (4, 6) is


Choose the correct alternative:

If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre


The line 2x − y + 6 = 0 meets the circle x2 + y2 + 10x + 9 = 0 at A and B. Find the equation of circle on AB as diameter.


Answer the following :

Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units


Answer the following :

Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 10y + 19 = 0,

x2 + y2 + 2x + 8y – 23 = 0.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 4y – 28 = 0,

x2 + y2 – 4x – 12 = 0


The centre of the circle x = 3 + 5 cos θ, y = - 4 + 5 sin θ, is ______ 


If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______ 


If x2 + (2h - 1)xy + y2 - 24x - 8y + k = 0 is the equation of the circle and 12 is the radius of the circle, then ______.


The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.


The equation of circle whose diameter is the line joining the points (–5, 3) and (13, –3) is ______.


Circle x2 + y2 – 4x = 0 touches ______.


The equation of a circle with centre at (1, 0) and circumference 10π units is ______.


Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×