हिंदी

Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9

योग

उत्तर


Given equations of diameters are 2x + y = 6 and 3x + 2y = 4.

Let C (h, k) be the centre of the required circle. Since point of intersection of diameters is the centre of the circle,

x = h, y = k

∴ Equations of diameters become

2h + k = 6 …(i)

and 3h + 2k = 4 …(ii)

By (ii) – 2 x (i), we get

– h = – 8

∴ h = 8

Substituting h = 8 in (i), we get

2(8) + k = 6

∴ k = 6 – 16

∴ k = – 10

∴ Centre of the circle is C (8, –10) and radius, r = 9

The equation of a circle with centre at (h, k) and radius r is given by

(x – h)2 + (y – k)2 = r2

Here, h = 8, k = –10

∴ The required equation of the circle is

(x – 8)2 + (y +10)2 = 92

∴ x2 – 16x + 64 + y2 + 20y + 100 = 81

∴ x2 + y2 – 16x + 20y + 100 + 64 – 81 = 0

∴ x2 + y2 – 16x + 20y + 83 = 0.

shaalaa.com
Different Forms of Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Circle - Exercise 6.1 [पृष्ठ १२९]

APPEARS IN

संबंधित प्रश्न

Find the equation of the circle with centre at origin and radius 4.


Find the centre and radius of the circle:

(x − 5)2 + (y − 3)2 = 20


Find the centre and radius of the circle:

`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`


Find the equation of the circle with centre at (–2, 3) touching the X-axis.


Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0


If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre


Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the centre and radius of the following:

x2 + y2 − 6x − 8y − 24 = 0


Find the centre and radius of the following:

4x2 + 4y2 − 24x − 8y − 24 = 0


Find the equation of the circle passing through the points (5, 7), (6, 6) and (2, −2)


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic


Choose the correct alternative:

Equation of a circle which passes through (3, 6) and touches the axes is


Choose the correct alternative:

Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0


Choose the correct alternative:

If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle


Choose the correct alternative:

Area of the circle centre at (1, 2) and passing through (4, 6) is


Choose the correct alternative:

If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre


Choose the correct alternative:

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is


Answer the following :

Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ


Answer the following :

Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively


Answer the following :

Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic


Answer the following :

Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units


Answer the following :

Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 10y + 19 = 0,

x2 + y2 + 2x + 8y – 23 = 0.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 4y – 28 = 0,

x2 + y2 – 4x – 12 = 0


If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______ 


The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.


The equation of circle whose diameter is the line joining the points (–5, 3) and (13, –3) is ______.


The equation of a circle with centre at (1, 0) and circumference 10π units is ______.


Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×