हिंदी

Choose the correct alternative: The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is

विकल्प

  • x2 + y2 = 9a2 

  • x2 + y2 = 16a2 

  • x2 + y2 = 4a2 

  • x2 + y2 = a2 

MCQ

उत्तर

x2 + y2 = 4a2 

Explanation;

Since the triangle is equilateral.

∴ The centroid of the triangle is same as the circumcentre;

and radius of the circumcircle = `2/3("median")`

= `2/3(3"a")`

= 2a

Hence, the equation of the circumcircle whose centre is at (0, 0) and radius 2a is x2 + y2 = 4a2.

shaalaa.com
Different Forms of Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Circle - Miscellaneous Exercise 6 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Circle
Miscellaneous Exercise 6 | Q I. (8) | पृष्ठ १३७

संबंधित प्रश्न

Find the equation of the circle with centre at (2, −3) and radius 5.


Find the equation of the circle with centre at (−3, −3) passing through the point (−3, −6)


Find the centre and radius of the circle:

x2 + y2 = 25


Find the centre and radius of the circle:

`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`


Find the equation of the circle with centre at (a, b) touching the Y-axis


Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.


Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0


Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9


If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre


Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0


Find the centre and radius of the following:

x2 + y2 − 6x − 8y − 24 = 0


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic


Choose the correct alternative:

Equation of a circle which passes through (3, 6) and touches the axes is


Choose the correct alternative:

Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0


Choose the correct alternative:

If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle


Choose the correct alternative:

Area of the circle centre at (1, 2) and passing through (4, 6) is


Choose the correct alternative:

If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre


Answer the following :

Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ


Answer the following :

Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively


Answer the following :

Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic


Answer the following :

Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 10y + 19 = 0,

x2 + y2 + 2x + 8y – 23 = 0.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 4y – 28 = 0,

x2 + y2 – 4x – 12 = 0


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 + 4x – 12y + 4 = 0,

x2 + y2 – 2x – 4y + 4 = 0


If 2x - 4y = 9 and 6x - 12y + 7 = 0 are the tangents of same circle, then its radius will be ______ 


The centre of the circle x = 3 + 5 cos θ, y = - 4 + 5 sin θ, is ______ 


The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.


The equation of a circle with centre at (1, 0) and circumference 10π units is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×