मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Choose the correct alternative: The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is

पर्याय

  • x2 + y2 = 9a2 

  • x2 + y2 = 16a2 

  • x2 + y2 = 4a2 

  • x2 + y2 = a2 

MCQ

उत्तर

x2 + y2 = 4a2 

Explanation;

Since the triangle is equilateral.

∴ The centroid of the triangle is same as the circumcentre;

and radius of the circumcircle = `2/3("median")`

= `2/3(3"a")`

= 2a

Hence, the equation of the circumcircle whose centre is at (0, 0) and radius 2a is x2 + y2 = 4a2.

shaalaa.com
Different Forms of Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Circle - Miscellaneous Exercise 6 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Circle
Miscellaneous Exercise 6 | Q I. (8) | पृष्ठ १३७

संबंधित प्रश्‍न

Find the equation of the circle with centre at origin and radius 4.


Find the equation of the circle with centre at (2, −3) and radius 5.


Find the equation of the circle with centre at (−3, −3) passing through the point (−3, −6)


Find the centre and radius of the circle:

x2 + y2 = 25


Find the centre and radius of the circle:

(x − 5)2 + (y − 3)2 = 20


Find the equation of the circle with centre at (–2, 3) touching the X-axis.


Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.


If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre


Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the centre and radius of the following:

4x2 + 4y2 − 24x − 8y − 24 = 0


Find the equation of the circle passing through the points (5, 7), (6, 6) and (2, −2)


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic


Choose the correct alternative:

Equation of a circle which passes through (3, 6) and touches the axes is


Choose the correct alternative:

Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0


Choose the correct alternative:

If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle


Choose the correct alternative:

Area of the circle centre at (1, 2) and passing through (4, 6) is


Choose the correct alternative:

If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre


Answer the following :

Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0


Answer the following :

Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0


Answer the following :

Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively


Answer the following :

Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic


The line 2x − y + 6 = 0 meets the circle x2 + y2 + 10x + 9 = 0 at A and B. Find the equation of circle on AB as diameter.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 + 4x – 12y + 4 = 0,

x2 + y2 – 2x – 4y + 4 = 0


Answer the following :

Find the length of the tangent segment drawn from the point (5, 3) to the circle x2 + y2 + 10x – 6y – 17 = 0


If 2x - 4y = 9 and 6x - 12y + 7 = 0 are the tangents of same circle, then its radius will be ______ 


The radius of a circle is increasing uniformly at the rate of 2.5cm/sec. The rate of increase in the area when the radius is 12cm, will be ______ 


If x2 + (2h - 1)xy + y2 - 24x - 8y + k = 0 is the equation of the circle and 12 is the radius of the circle, then ______.


The equation of circle whose diameter is the line joining the points (–5, 3) and (13, –3) is ______.


Circle x2 + y2 – 4x = 0 touches ______.


The equation of a circle with centre at (1, 0) and circumference 10π units is ______.


Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×