Advertisements
Advertisements
प्रश्न
Answer the following :
Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic
उत्तर
Let the equation of circle passing through the points (9, 1), (7, 9), (–2, 12) be
x2 + y2 + 2gx + 2fy + c = 0 …(i)
For point (9, 1),
Substituting x = 9 and y = 1 in (i), we get
81 + 1 + 18g + 2f + c = 0
∴ 18g + 2f + c = –82 …(ii)
For point (7, 9),
Substituting x = 7 and y = 9 in (i), we get
49 + 81 + 14g + 18f + c = 0
∴ 14g + 18f + c = – 130 …(iii)
For point (–2, 12),
Substituting x = – 2 and y = 12 in (i), we get
4 + 144 – 4g + 24f + c = 0
∴ –4g + 24f + c = – 148 …(iv)
By (ii) – (iii), we get
4g – 16f = 48
∴ g – 4f = 12 ...(v)
By (iii) – (iv), we get
18g – 6f = 18
∴ 3g – f = 3 ...(vi)
By 3 x (v) – (vi), we get
– 11f = 33
∴ f = – 3
Substituting f = – 3 in (vi), we get
3g – (– 3) = 3
∴ 3g + 3 = 3
∴ g = 0
Substituting g = 0 and f = – 3 in (ii), we get
18 (0) + 2(– 3) + c = – 82
∴ – 6 + c = – 82
∴ c = –76
∴ Equation of the circle becomes
x2 + y2 + 2(0)x + 2(– 3)y + (– 76) = 0
∴ x2 + y2 – 6y – 76 = 0 …(vii)
Now for the point (6, 10),
Substituting x = 6 and y = 10 in L.H.S. of (vii),
we get
L.H.S = 62 + 102 – 6(10) – 76
= 36 + 100 – 60 – 76
= 0
= R.H.S.
∴ Point (6,10) satisfies equation (vii).
∴ the given points are concyclic.
APPEARS IN
संबंधित प्रश्न
Find the equation of the circle with centre at origin and radius 4.
Find the equation of the circle with centre at (−3, −3) passing through the point (−3, −6)
Find the centre and radius of the circle:
(x − 5)2 + (y − 3)2 = 20
Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.
Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0
If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre
Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.
Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes
Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0
Find the centre and radius of the following:
x2 + y2 − 2x + 4y − 4 = 0
Choose the correct alternative:
Equation of a circle which passes through (3, 6) and touches the axes is
Choose the correct alternative:
If the lines 2x − 3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 sq. units, then find the equation of the circle
Choose the correct alternative:
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle
Choose the correct alternative:
Area of the circle centre at (1, 2) and passing through (4, 6) is
Choose the correct alternative:
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is
Answer the following :
Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0
Answer the following :
Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ
Answer the following :
Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0
Answer the following :
Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively
Answer the following :
Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x – 10y + 19 = 0,
x2 + y2 + 2x + 8y – 23 = 0.
Answer the following :
Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:
x2 + y2 + 4x – 12y + 4 = 0,
x2 + y2 – 2x – 4y + 4 = 0
If one of the diameters of the curve x2 + y2 - 4x - 6y + 9 = 0 is a chord of a circle with centre (1, 1), then the radius of this circle is ______
If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______
The radius of a circle is increasing uniformly at the rate of 2.5cm/sec. The rate of increase in the area when the radius is 12cm, will be ______
If x2 + (2h - 1)xy + y2 - 24x - 8y + k = 0 is the equation of the circle and 12 is the radius of the circle, then ______.
The equation of circle whose diameter is the line joining the points (–5, 3) and (13, –3) is ______.
The equation of a circle with centre at (1, 0) and circumference 10π units is ______.
Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.