Advertisements
Advertisements
प्रश्न
Find the centre and radius of the following:
x2 + y2 − 2x + 4y − 4 = 0
उत्तर
Comparing the equation
x2 + y2 − 2x + 4y − 4 = 0
with the equation
x2 + y2 + 2gx + 2fy + c = 0, we get,
2g= − 2, 2f = 4 and c = − 4
∴ g = − 1, f = 2 and c = − 4
∴ centre of the circle = (− g, − f) = (1, − 2)
and radius of the circle = `sqrt("g"^2 + f^2 - "c"`
= `sqrt((-1)^2 + (2)^2 - (- 4))`
= `sqrt(1 + 4 + 4)`
= 3.
APPEARS IN
संबंधित प्रश्न
Find the centre and radius of the circle:
x2 + y2 = 25
Find the centre and radius of the circle:
(x − 5)2 + (y − 3)2 = 20
Find the centre and radius of the circle:
`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`
Find the equation of the circle with centre at (–2, 3) touching the X-axis.
Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0
Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9
Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.
Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes
Show that the equation 3x2 + 3y2 + 12x + 18y − 11 = 0 represents a circle
Find the equation of the circle passing through the points (5, 7), (6, 6) and (2, −2)
Choose the correct alternative:
Equation of a circle which passes through (3, 6) and touches the axes is
Choose the correct alternative:
If the lines 2x − 3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 sq. units, then find the equation of the circle
Choose the correct alternative:
Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0
Choose the correct alternative:
Area of the circle centre at (1, 2) and passing through (4, 6) is
Choose the correct alternative:
If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre
Choose the correct alternative:
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is
Answer the following :
Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0
Answer the following :
Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ
Answer the following :
Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively
Answer the following :
Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units
Answer the following :
Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x + 10y +20 = 0,
x2 + y2 + 8x – 6y – 24 = 0.
Answer the following :
Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x – 10y + 19 = 0,
x2 + y2 + 2x + 8y – 23 = 0.
Answer the following :
Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x – 4y – 28 = 0,
x2 + y2 – 4x – 12 = 0
Answer the following :
Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:
x2 + y2 + 4x – 12y + 4 = 0,
x2 + y2 – 2x – 4y + 4 = 0
Answer the following :
Find the length of the tangent segment drawn from the point (5, 3) to the circle x2 + y2 + 10x – 6y – 17 = 0
If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______
If x2 + (2h - 1)xy + y2 - 24x - 8y + k = 0 is the equation of the circle and 12 is the radius of the circle, then ______.
The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.
Circle x2 + y2 – 4x = 0 touches ______.