मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Show that the equation 3x2 + 3y2 + 12x + 18y − 11 = 0 represents a circle - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the equation 3x2 + 3y2 + 12x + 18y − 11 = 0 represents a circle

बेरीज

उत्तर

Given equation is

3x2 + 3y2 + 12x + 18y − 11 = 0

Dividing throughout by 3, we get

`x^2 + y^2 + 4x + 6y - 11/3` = 0

Comparing this equation with

x2 + y2 + 2gx + 2fy + c = 0, we get

2g = 4, 2f = 6, c = `-11/3`

∴ g = 2, f = 3, c = `-11/3`

Now, g2 + f2 – c = `(2)^2 + (3)^2 - (-11/3)`

= `4 + 9 + 11/3`

= `50/3 > 0`

∴ The given equation represents a circle.

shaalaa.com
Different Forms of Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Circle - Exercise 6.2 [पृष्ठ १३२]

संबंधित प्रश्‍न

Find the equation of the circle with centre at (−3, −2) and radius 6.


Find the centre and radius of the circle:

(x − 5)2 + (y − 3)2 = 20


Find the equation of the circle with centre at (a, b) touching the Y-axis


Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.


Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0


Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.


Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0


Find the centre and radius of the following:

x2 + y2 − 2x + 4y − 4 = 0


Find the centre and radius of the following:

x2 + y2 − 6x − 8y − 24 = 0


Find the equation of the circle passing through the points (5, 7), (6, 6) and (2, −2)


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic


Choose the correct alternative:

Equation of a circle which passes through (3, 6) and touches the axes is


Choose the correct alternative:

If the lines 2x − 3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 sq. units, then find the equation of the circle


Choose the correct alternative:

If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre


Answer the following :

Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ


Answer the following :

Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0


Answer the following :

Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively


Answer the following :

Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic


The line 2x − y + 6 = 0 meets the circle x2 + y2 + 10x + 9 = 0 at A and B. Find the equation of circle on AB as diameter.


Answer the following :

Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units


Answer the following :

Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 10y + 19 = 0,

x2 + y2 + 2x + 8y – 23 = 0.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 4y – 28 = 0,

x2 + y2 – 4x – 12 = 0


The centre of the circle x = 3 + 5 cos θ, y = - 4 + 5 sin θ, is ______ 


If x2 + (2h - 1)xy + y2 - 24x - 8y + k = 0 is the equation of the circle and 12 is the radius of the circle, then ______.


The equation of circle whose diameter is the line joining the points (–5, 3) and (13, –3) is ______.


Circle x2 + y2 – 4x = 0 touches ______.


The equation of a circle with centre at (1, 0) and circumference 10π units is ______.


Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×