मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

The line 2x − y + 6 = 0 meets the circle x2 + y2 + 10x + 9 = 0 at A and B. Find the equation of circle on AB as diameter - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The line 2x − y + 6 = 0 meets the circle x2 + y2 + 10x + 9 = 0 at A and B. Find the equation of circle on AB as diameter.

बेरीज

उत्तर

2x − y + 6 = 0

∴ y = 2x + 6

Substituting y = 2x + 6 in x2 + y2 + 10x + 9 = 0,

we get

x2 + (2x + 6)2 + 10x + 9 = 0

∴ x2 + 4x2 + 24x + 36 + 10x + 9 = 0

∴ 5x2 + 34x + 45 = 0

∴ 5x2 + 25x + 9x + 45 = 0

∴ (5x + 9) (x + 5) = 0

∴ 5x = – 9 or x = – 5

∴ x = `(-9)/5` or x =  – 5

When x = `(-9)/5` 

y = `2 xx (-9)/2 + 6`

= `(-18)/5 + 6`

= `(-18 + 30)/5`

= `12/5`

∴ Point of intersection is `"A"((-9)/5, 12/5)`.

When x = – 5,

y = – 10 + 6 = – 4

∴ Point of intersection in B (–5, –4).

By diameter form, equation of circle with AB as diameter is

`(x + 9/5)(x + 5) + (y - 12/5)(y + 4)` = 0

∴ (5x + 9) (x + 5) + (5y – 12) ( y + 4) = 0

∴ 5x2 + 25x + 9x + 45 + 5y2 + 20y – 12y – 48 = 0

∴ 5x2 + 5y2 + 34x + 8y – 3 = 0.

shaalaa.com
Different Forms of Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Circle - Miscellaneous Exercise 6 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 6 Circle
Miscellaneous Exercise 6 | Q II. (6) | पृष्ठ १३७

संबंधित प्रश्‍न

Find the equation of the circle with centre at origin and radius 4.


Find the equation of the circle with centre at (2, −3) and radius 5.


Find the equation of the circle with centre at (−3, −3) passing through the point (−3, −6)


Find the centre and radius of the circle:

(x − 5)2 + (y − 3)2 = 20


Find the centre and radius of the circle:

`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`


Find the equation of the circle with centre at (a, b) touching the Y-axis


Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.


Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9


If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the centre and radius of the following:

x2 + y2 − 2x + 4y − 4 = 0


Find the centre and radius of the following:

4x2 + 4y2 − 24x − 8y − 24 = 0


Show that the equation 3x2 + 3y2 + 12x + 18y − 11 = 0 represents a circle


Choose the correct alternative:

Equation of a circle which passes through (3, 6) and touches the axes is


Answer the following :

Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0


Answer the following :

Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ


Answer the following :

Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively


Answer the following :

Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x + 10y +20 = 0,

x2 + y2 + 8x – 6y – 24 = 0.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 4y – 28 = 0,

x2 + y2 – 4x – 12 = 0


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 + 4x – 12y + 4 = 0,

x2 + y2 – 2x – 4y + 4 = 0


Answer the following :

Find the length of the tangent segment drawn from the point (5, 3) to the circle x2 + y2 + 10x – 6y – 17 = 0


The centre of the circle x = 3 + 5 cos θ, y = - 4 + 5 sin θ, is ______ 


If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______ 


If x2 + (2h - 1)xy + y2 - 24x - 8y + k = 0 is the equation of the circle and 12 is the radius of the circle, then ______.


The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.


Circle x2 + y2 – 4x = 0 touches ______.


The equation of a circle with centre at (1, 0) and circumference 10π units is ______.


Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×