मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the equation of the circle with centre at origin and radius 4. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle with centre at origin and radius 4.

बेरीज

उत्तर

Equation of the circle with centre at origin and radius r is given by

x2 + y2 = r2

Here, r = 4

∴ equation of the required circle is x2 + y2 = 16.

shaalaa.com
Different Forms of Equation of a Circle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Circle - Exercise 6.1 [पृष्ठ १२९]

APPEARS IN

संबंधित प्रश्‍न

Find the equation of the circle with centre at (−3, −2) and radius 6.


Find the equation of the circle with centre at (−3, −3) passing through the point (−3, −6)


Find the centre and radius of the circle:

x2 + y2 = 25


Find the centre and radius of the circle:

`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`


Find the equation of the circle with centre at (a, b) touching the Y-axis


Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.


Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9


If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre


Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0


Find the centre and radius of the following:

x2 + y2 − 2x + 4y − 4 = 0


Find the centre and radius of the following:

x2 + y2 − 6x − 8y − 24 = 0


Find the equation of the circle passing through the points (5, 7), (6, 6) and (2, −2)


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic


Choose the correct alternative:

Equation of a circle which passes through (3, 6) and touches the axes is


Choose the correct alternative:

If the lines 2x − 3y = 5 and 3x − 4y = 7 are the diameters of a circle of area 154 sq. units, then find the equation of the circle


Choose the correct alternative:

If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre


Answer the following :

Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0


Answer the following :

Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0


Answer the following :

Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively


Answer the following :

Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic


The line 2x − y + 6 = 0 meets the circle x2 + y2 + 10x + 9 = 0 at A and B. Find the equation of circle on AB as diameter.


Answer the following :

Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units


Answer the following :

Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x + 10y +20 = 0,

x2 + y2 + 8x – 6y – 24 = 0.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 4y – 28 = 0,

x2 + y2 – 4x – 12 = 0


If one of the diameters of the curve x2 + y2 - 4x - 6y + 9 = 0 is a chord of a circle with centre (1, 1), then the radius of this circle is ______ 


The centre of the circle x = 3 + 5 cos θ, y = - 4 + 5 sin θ, is ______ 


If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______ 


If x2 + (2h - 1)xy + y2 - 24x - 8y + k = 0 is the equation of the circle and 12 is the radius of the circle, then ______.


The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.


Circle x2 + y2 – 4x = 0 touches ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×