हिंदी

Find the centre and radius of the circle: (x-12)2+(y+13)2=136 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the centre and radius of the circle:

`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`

योग

उत्तर

Comparing the equation `(x - 1/2)^2 + (y + 1/3)^2 = 1/36`

with (x – h)2 + (y – k)2 = r2, we get,

h = `1/2`, k = `-1/3` and r2 = `1/36`

∴ centre is (h, k), i.e., `(1/2, -1/3)`

and radius = r = `1/6`

shaalaa.com
Different Forms of Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Circle - Exercise 6.1 [पृष्ठ १२९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Circle
Exercise 6.1 | Q 2. (iii) | पृष्ठ १२९

संबंधित प्रश्न

Find the equation of the circle with centre at (−3, −2) and radius 6.


Find the centre and radius of the circle:

x2 + y2 = 25


Find the equation of the circle with centre at (a, b) touching the Y-axis


Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.


Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0


Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9


If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre


Find the equation of a circle with radius 4 units and touching both the co-ordinate axes having centre in third quadrant.


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0


Find the centre and radius of the following:

4x2 + 4y2 − 24x − 8y − 24 = 0


Show that the equation 3x2 + 3y2 + 12x + 18y − 11 = 0 represents a circle


Find the equation of the circle passing through the points (5, 7), (6, 6) and (2, −2)


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic


Choose the correct alternative:

Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0


Choose the correct alternative:

If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle


Choose the correct alternative:

Area of the circle centre at (1, 2) and passing through (4, 6) is


Choose the correct alternative:

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is


Answer the following :

Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0


Answer the following :

Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively


Answer the following :

Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic


The line 2x − y + 6 = 0 meets the circle x2 + y2 + 10x + 9 = 0 at A and B. Find the equation of circle on AB as diameter.


Answer the following :

Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 10y + 19 = 0,

x2 + y2 + 2x + 8y – 23 = 0.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 + 4x – 12y + 4 = 0,

x2 + y2 – 2x – 4y + 4 = 0


Answer the following :

Find the length of the tangent segment drawn from the point (5, 3) to the circle x2 + y2 + 10x – 6y – 17 = 0


If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______ 


The radius of a circle is increasing uniformly at the rate of 2.5cm/sec. The rate of increase in the area when the radius is 12cm, will be ______ 


The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×