Advertisements
Advertisements
Question
Find the centre and radius of the circle:
`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`
Solution
Comparing the equation `(x - 1/2)^2 + (y + 1/3)^2 = 1/36`
with (x – h)2 + (y – k)2 = r2, we get,
h = `1/2`, k = `-1/3` and r2 = `1/36`
∴ centre is (h, k), i.e., `(1/2, -1/3)`
and radius = r = `1/6`
APPEARS IN
RELATED QUESTIONS
Find the equation of the circle with centre at (−3, −2) and radius 6.
Find the equation of the circle with centre at (2, −3) and radius 5.
Find the centre and radius of the circle:
x2 + y2 = 25
Find the centre and radius of the circle:
(x − 5)2 + (y − 3)2 = 20
Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.
If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre
Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes
Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0
Find the centre and radius of the following:
x2 + y2 − 6x − 8y − 24 = 0
Find the centre and radius of the following:
4x2 + 4y2 − 24x − 8y − 24 = 0
Show that the equation 3x2 + 3y2 + 12x + 18y − 11 = 0 represents a circle
Choose the correct alternative:
Equation of a circle which passes through (3, 6) and touches the axes is
Choose the correct alternative:
Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0
Choose the correct alternative:
If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle
Choose the correct alternative:
Area of the circle centre at (1, 2) and passing through (4, 6) is
Choose the correct alternative:
If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre
Answer the following :
Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0
Answer the following :
Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ
Answer the following :
Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0
Answer the following :
Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic
Answer the following :
Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units
Answer the following :
Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x + 10y +20 = 0,
x2 + y2 + 8x – 6y – 24 = 0.
Answer the following :
Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x – 10y + 19 = 0,
x2 + y2 + 2x + 8y – 23 = 0.
Answer the following :
Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:
x2 + y2 + 4x – 12y + 4 = 0,
x2 + y2 – 2x – 4y + 4 = 0
Answer the following :
Find the length of the tangent segment drawn from the point (5, 3) to the circle x2 + y2 + 10x – 6y – 17 = 0
If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______
The radius of a circle is increasing uniformly at the rate of 2.5cm/sec. The rate of increase in the area when the radius is 12cm, will be ______
The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.
Circle x2 + y2 – 4x = 0 touches ______.
Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.