Advertisements
Advertisements
Question
Find the equation of the circle with centre at (a, b) touching the Y-axis
Solution
Since the circle is touching the Y-axis,
radius of the circle is X-co-ordinate of the centre.
∴ r = a
The equation of a circle with centre at (h, k) and radius r is given by
(x – h)2 + (y – k)2 = r2
Here, h = a, k = b
∴ The required equation of the circle is
(x – a)2 + (y – b)2 = a2
∴ x2 – 2ax + a2 + y2 – 2by + b2 = a2
∴ x2 + y2 – 2ax – 2by + b2 = 0
APPEARS IN
RELATED QUESTIONS
Find the equation of the circle with centre at origin and radius 4.
Find the equation of the circle with centre at (−3, −2) and radius 6.
Find the equation of the circle with centre at (2, −3) and radius 5.
Find the centre and radius of the circle:
x2 + y2 = 25
Find the centre and radius of the circle:
(x − 5)2 + (y − 3)2 = 20
Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0
Find the centre and radius of the following:
x2 + y2 − 2x + 4y − 4 = 0
Find the centre and radius of the following:
x2 + y2 − 6x − 8y − 24 = 0
Find the equation of the circle passing through the points (5, 7), (6, 6) and (2, −2)
Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic
Choose the correct alternative:
Equation of a circle which passes through (3, 6) and touches the axes is
Choose the correct alternative:
Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0
Choose the correct alternative:
Area of the circle centre at (1, 2) and passing through (4, 6) is
Choose the correct alternative:
If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre
Choose the correct alternative:
The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is
Answer the following :
Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0
Answer the following :
Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0
Answer the following :
Find the equation of circle which passes through the origin and cuts of chords of length 4 and 6 on the positive side of x-axis and y-axis respectively
Answer the following :
Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic
Answer the following :
Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:
x2 + y2 – 4x – 4y – 28 = 0,
x2 + y2 – 4x – 12 = 0
Answer the following :
Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:
x2 + y2 + 4x – 12y + 4 = 0,
x2 + y2 – 2x – 4y + 4 = 0
Answer the following :
Find the length of the tangent segment drawn from the point (5, 3) to the circle x2 + y2 + 10x – 6y – 17 = 0
If one of the diameters of the curve x2 + y2 - 4x - 6y + 9 = 0 is a chord of a circle with centre (1, 1), then the radius of this circle is ______
The centre of the circle x = 3 + 5 cos θ, y = - 4 + 5 sin θ, is ______
If the radius of a circle increases from 3 cm to 3.2 cm, then the increase in the area of the circle is ______
The radius of a circle is increasing uniformly at the rate of 2.5cm/sec. The rate of increase in the area when the radius is 12cm, will be ______
The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.
Circle x2 + y2 – 4x = 0 touches ______.
Let AB be a chord of the circle x2 + y2 = r2 subtending a right angle at the centre, then the locus of the centroid of the ΔPAB as P moves on the circle is ______.