English

Answer the following : Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following :

Find the equation of the circle concentric with x2 + y2 – 4x + 6y = 1 and having radius 4 units

Sum

Solution

Given equation of circle is

x2 + y2 – 4x + 6y = 1

i.e., x2 + y2 – 4x + 6y – 1 = 0

Comparing this equation with

x2 + y2 + 2gx + 2fy + c = 0, we get

2g = –4, 2f = 6

∴ g = –2, f = 3

∴ Centre of the circle = (–g, –f) = (2, –3)

Given circle is concentric with the required circle.

∴ They have same centre.

∴ Centre of the required circle = (2, –3)

The equation of a circle with centre at (h, k) and radius r is

(x – h)2 + (y – k)2 = r2

Here, h = 2, k = –3 and r = 4

∴ the required equation of the circle is

(x – 2)2 + [y – (–3)]2 = 42

∴ (x – 2)2 + (y + 3)2 = 16

∴ x2 – 4x + 4 + y2 + 6y + 9 – 16 = 0

∴ x2 + y2 – 4x + 6y – 3 = 0.

shaalaa.com
Different Forms of Equation of a Circle
  Is there an error in this question or solution?
Chapter 6: Circle - Miscellaneous Exercise 6 [Page 137]

APPEARS IN

RELATED QUESTIONS

Find the equation of the circle with centre at origin and radius 4.


Find the equation of the circle with centre at (−3, −2) and radius 6.


Find the equation of the circle with centre at (2, −3) and radius 5.


Find the centre and radius of the circle:

(x − 5)2 + (y − 3)2 = 20


Find the equation of the circle with centre at (a, b) touching the Y-axis


Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.


Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the centre and radius of the following:

x2 + y2 − 2x + 4y − 4 = 0


Find the centre and radius of the following:

4x2 + 4y2 − 24x − 8y − 24 = 0


Show that the points (3, −2), (1, 0), (−1, −2) and (1, −4) are concyclic


Choose the correct alternative:

Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0


Choose the correct alternative:

If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle


Choose the correct alternative:

Area of the circle centre at (1, 2) and passing through (4, 6) is


Choose the correct alternative:

If a circle passes through the point (0, 0), (a, 0) and (0, b) then find the co-ordinates of its centre


Choose the correct alternative:

The equation of a circle with origin as centre and passing through the vertices of an equilateral triangle whose median is of length 3a is


Answer the following :

Find the centre and radius of the circle x2 + y2 − x +2y − 3 = 0


Answer the following :

Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0


Answer the following :

Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 4y – 28 = 0,

x2 + y2 – 4x – 12 = 0


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 + 4x – 12y + 4 = 0,

x2 + y2 – 2x – 4y + 4 = 0


Answer the following :

Find the length of the tangent segment drawn from the point (5, 3) to the circle x2 + y2 + 10x – 6y – 17 = 0


If one of the diameters of the curve x2 + y2 - 4x - 6y + 9 = 0 is a chord of a circle with centre (1, 1), then the radius of this circle is ______ 


The centre of the circle x = 3 + 5 cos θ, y = - 4 + 5 sin θ, is ______ 


The radius of a circle is increasing uniformly at the rate of 2.5cm/sec. The rate of increase in the area when the radius is 12cm, will be ______ 


If x2 + (2h - 1)xy + y2 - 24x - 8y + k = 0 is the equation of the circle and 12 is the radius of the circle, then ______.


The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×