हिंदी

Choose the correct alternative: Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct alternative:

Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y − 4x + 3 = 0

विकल्प

  • x2 + y2 − 4x − 10y + 25 = 0

  • x2 + y2 − 4x − 10y − 25 = 0

  • x2 + y2 − 4x + 10y − 25 = 0

  • x2 + y2 + 4x − 10y + 25 = 0

MCQ

उत्तर

x2 + y2 − 4x − 10y + 25 = 0

shaalaa.com
Different Forms of Equation of a Circle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Circle - Miscellaneous Exercise 6 [पृष्ठ १३६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Circle
Miscellaneous Exercise 6 | Q I. (3) | पृष्ठ १३६

संबंधित प्रश्न

Find the equation of the circle with centre at origin and radius 4.


Find the equation of the circle with centre at (−3, −2) and radius 6.


Find the equation of the circle with centre at (2, −3) and radius 5.


Find the centre and radius of the circle:

x2 + y2 = 25


Find the centre and radius of the circle:

(x − 5)2 + (y − 3)2 = 20


Find the centre and radius of the circle:

`(x - 1/2)^2 + (y + 1/3)^2 = 1/36`


Find the equation of the circle with centre at (a, b) touching the Y-axis


Find the equation of the circle with centre at (–2, 3) touching the X-axis.


Find the equation of the circle with centre on the X-axis and passing through the origin having radius 4.


Find the equation of the circle with centre at (3,1) and touching the line 8x − 15y + 25 = 0


Find the equation circle if the equations of two diameters are 2x + y = 6 and 3x + 2y = 4. When radius of circle is 9


If y = 2x is a chord of circle x2 + y2−10x = 0, find the equation of circle with this chord as diametre


Find the equation of circle (a) passing through the origin and having intercepts 4 and −5 on the co-ordinate axes


Find the equation of a circle passing through the points (1,−4), (5,2) and having its centre on the line x − 2y + 9 = 0


Find the centre and radius of the following:

x2 + y2 − 6x − 8y − 24 = 0


Show that the equation 3x2 + 3y2 + 12x + 18y − 11 = 0 represents a circle


Choose the correct alternative:

If the lines 3x − 4y + 4 = 0 and 6x − 8y − 7 = 0 are tangents to a circle, then find the radius of the circle


Choose the correct alternative:

Area of the circle centre at (1, 2) and passing through (4, 6) is


Answer the following :

Find the centre and radius of the circle x = 3 – 4 sinθ, y = 2 – 4cosθ


Answer the following :

Find the equation of circle passing through the point of intersection of the lines x + 3y = 0 and 2x − 7y = 0 whose centre is the point of intersection of lines x + y + 1 = 0 and x − 2y + 4 = 0


Answer the following :

Show that the points (9, 1), (7, 9), (−2, 12) and (6, 10) are concyclic


Answer the following :

Show that the circles touch each other externally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x + 10y +20 = 0,

x2 + y2 + 8x – 6y – 24 = 0.


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 – 4x – 4y – 28 = 0,

x2 + y2 – 4x – 12 = 0


Answer the following :

Show that the circles touch each other internally. Find their point of contact and the equation of their common tangent:

x2 + y2 + 4x – 12y + 4 = 0,

x2 + y2 – 2x – 4y + 4 = 0


Answer the following :

Find the length of the tangent segment drawn from the point (5, 3) to the circle x2 + y2 + 10x – 6y – 17 = 0


The radius of a circle is increasing uniformly at the rate of 2.5cm/sec. The rate of increase in the area when the radius is 12cm, will be ______ 


The equation of the circle with centre (4, 5) which passes through (7, 3) is ______.


The equation of circle whose diameter is the line joining the points (–5, 3) and (13, –3) is ______.


Circle x2 + y2 – 4x = 0 touches ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×