Advertisements
Advertisements
प्रश्न
In ΔABC, A + B + C = π show that
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
उत्तर
In ΔABC,
A + B + C = π
∴ 2A + 2B + 2C = 2π
∴ 2A + 2B = 2π – 2C
∴ tan (2A + 2B) = tan (2π – 2C)
∴ `(tan2"A" + tan2"B")/(1 - tan2"A"*tan2"B")` = – tan 2C
∴ tan 2A + tan 2B = − tan 2C . (1 − tan 2A . tan 2B)
∴ tan 2A + tan 2B = – tan 2C + tan 2A· tan 2B· tan 2C
∴ tan 2A + tan 2B + tan 2C = tan 2A · tan 2B· tan 2C
APPEARS IN
संबंधित प्रश्न
In ΔABC, A + B + C = π show that
sin2A + sin2B − sin2C = 2 sin A sin B cos C
In ΔABC, A + B + C = π show that
`tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2tan "A"/2` = 1
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Prove the following:
If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
Prove the following:
In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`
The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.
If A and Bare supplementary angles, then `sin^2 "A"/2 + sin^2 "B"/2` = ______.
If `cos "A" = 3/4,`then 32 sin`"A"/2 cos (5"A")/2` = ?
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.
In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.
Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.
ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If A + B + C = π and sin C + sin A cos B = 0, then tan A . cot B is equal to ______.
If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.
If a ΔABC, the value of sin A + sin B + sin C is ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
If A + B = C = 180°, then the value of `cot A/2 + cot B/2 + cot C/2` will be ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.
The value of `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` is ______.