Advertisements
Advertisements
प्रश्न
Prove the following:
In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`
उत्तर
In ∆ABC, A + B + C = π, where ∠C = `(2pi)/3`
∴ A + B = π – C = `pi/3` ...(1)
L.H.S. = cos2A + cos2B – cos A cos B
= cos2A + 1 – sin2B – cos A cos B
= 1 + (cos2A – sin2B) – cos A cos B
= 1 + cos (A + B) · cos (A – B) – cos A cos B ...[∵ cos (A + B) · cos (A – B) = cos2A – sin2B]
= `1 + cos pi/3cos("A" - "B") - cos"A" cos"B"` ...[By (1)]
= `1 + 1/2cos("A" - "B") - cos"A" cos"B"`
= `1 + 1/2(cos"A" cos"B" + sin"A" sin"B") - cos"A" cos"B"`
= `1 + 1/2cos"A"cos"B" + 1/2sin "A" sin"B" - cos"A"cos"B"`
= `1 + 1/2sin"A"sin"B" - 1/2cos"A"cos"B"`
= `1 - 1/2(cos"A" cos"B" - sin"A"sin"B")`
= `1 - 1/2cos("A" + "B")`
= `1 - 1/2cos pi/3` ...[By (1)]
= `1 - 1/2 xx 1/2`
= `1 - 1/4`
= `3/4`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
In ΔABC, A + B + C = π show that
sin2A + sin2B − sin2C = 2 sin A sin B cos C
In ΔABC, A + B + C = π show that
`sin^2 "A"/2 + sin^2 "B"/2 - sin^2 "C"/2 = 1 - 2cos "A"/2 cos "B"/2 sin "C"/2`
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Prove the following:
`cos (2pi)/15 cos (4pi)/15cos (8pi)/15cos (16pi)/15 = 1/16`
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.
If A and Bare supplementary angles, then `sin^2 "A"/2 + sin^2 "B"/2` = ______.
The value of `[(1 - cos pi/6 + isin pi/6)/(1 - cos pi/6 - isin pi/6)]^6` = ______
If `cos "A" = 3/4,`then 32 sin`"A"/2 cos (5"A")/2` = ?
`(sin20^circ +2sin40^circ)/sin70^circ=` ______.
If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.
Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If A + B + C = π and sin C + sin A cos B = 0, then tan A . cot B is equal to ______.
If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.
If a ΔABC, the value of sin A + sin B + sin C is ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
If A + B = C = 180°, then the value of `cot A/2 + cot B/2 + cot C/2` will be ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.
The value of `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` is ______.