Advertisements
Advertisements
Question
Prove the following:
In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`
Solution
In ∆ABC, A + B + C = π, where ∠C = `(2pi)/3`
∴ A + B = π – C = `pi/3` ...(1)
L.H.S. = cos2A + cos2B – cos A cos B
= cos2A + 1 – sin2B – cos A cos B
= 1 + (cos2A – sin2B) – cos A cos B
= 1 + cos (A + B) · cos (A – B) – cos A cos B ...[∵ cos (A + B) · cos (A – B) = cos2A – sin2B]
= `1 + cos pi/3cos("A" - "B") - cos"A" cos"B"` ...[By (1)]
= `1 + 1/2cos("A" - "B") - cos"A" cos"B"`
= `1 + 1/2(cos"A" cos"B" + sin"A" sin"B") - cos"A" cos"B"`
= `1 + 1/2cos"A"cos"B" + 1/2sin "A" sin"B" - cos"A"cos"B"`
= `1 + 1/2sin"A"sin"B" - 1/2cos"A"cos"B"`
= `1 - 1/2(cos"A" cos"B" - sin"A"sin"B")`
= `1 - 1/2cos("A" + "B")`
= `1 - 1/2cos pi/3` ...[By (1)]
= `1 - 1/2 xx 1/2`
= `1 - 1/4`
= `3/4`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
In ΔABC, A + B + C = π show that
cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C
In ΔABC, A + B + C = π show that
sin A + sin B + sin C = `4cos "A"/2 cos "B"/2 cos "C"/2 `
In ΔABC, A + B + C = π show that
cos A + cos B – cos C = `4cos "A"/2 cos "B"/2 sin "C"/2 - 1`
In ΔABC, A + B + C = π show that
sin2A + sin2B − sin2C = 2 sin A sin B cos C
In ΔABC, A + B + C = π show that
`tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2tan "A"/2` = 1
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
In ΔABC, A + B + C = π show that
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
The value of `[(1 - cos pi/6 + isin pi/6)/(1 - cos pi/6 - isin pi/6)]^6` = ______
`(sin20^circ +2sin40^circ)/sin70^circ=` ______.
If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.
If A + B = C = 180°, then the value of `cot A/2 + cot B/2 + cot C/2` will be ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.
lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.