Advertisements
Advertisements
Question
In ΔABC, A + B + C = π show that
sin A + sin B + sin C = `4cos "A"/2 cos "B"/2 cos "C"/2 `
Solution
L.H.S. = sin A + sin B + sin C
= `2sin(("A" + "B")/2)*cos(("A" - "B")/2) + 2sin "C"/2*cos "C"/2`
In ΔABC, A + B + C = π
∴ A + B = π – C
∴ `sin(("A" + "B")/2) = sin((pi - "C")/2) = sin(pi/2 - "C"/2) = cos "C"/2` ...(i)
and `cos(("A" + "B")/2) = cos((pi - "C")/2) = cos(pi/2 - "C"/2) = sin "C"/2` ...(ii)
∴ L.H.S. = `2*cos "C"/2*cos(("A" - "B")/2) + 2cos(("A" + "B")/2)*cos "C"/2` ...[From (i) and (ii)]
= `2*cos "C"/2*[cos(("A" - "B")/2) + cos(("A" + "B")/2)]`
= `2*cos "C"/2*2cos[(("A" + "B")/2 + ("A" - "B")/2)/2]*cos[(("A" + "B")/2 - ("A" - "B")/2)/2]`
= `2*cos "C"/2*(2cos "A"/2 *cos "B"/2)`
= `4*cos "A"/2* cos "B"/2*cos "C"/2`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
In ΔABC, A + B + C = π show that
cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C
In ΔABC, A + B + C = π show that
cos A + cos B – cos C = `4cos "A"/2 cos "B"/2 sin "C"/2 - 1`
In ΔABC, A + B + C = π show that
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
Prove the following:
In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.
Prove the following:
In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`
If A and Bare supplementary angles, then `sin^2 "A"/2 + sin^2 "B"/2` = ______.
If `cos "A" = 3/4,`then 32 sin`"A"/2 cos (5"A")/2` = ?
If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.
If α + β – γ = π, then sin2 α + sin2 β – sin2 γ is equal to ______.
In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
If A + B + C = π and sin C + sin A cos B = 0, then tan A . cot B is equal to ______.
If a ΔABC, the value of sin A + sin B + sin C is ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.