Advertisements
Advertisements
Question
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
Solution
L.H.S. = `(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)`
Since, cos (π – θ) = – cos θ
∴ `cos (7pi)/8 = cos(pi - pi/8) = -cos pi/8` ...(i)
and `cos (5pi)/8 = cos(pi - (3pi)/8) = -cos (3pi)/8` ...(ii)
∴ L.H.S. = `(1 + cos pi/8)(1 + cos (3pi)/8)*(1 - cos (3pi)/8)(1 - cos pi/8)` ...[From (i) and (ii)
= `(1 - cos^2 pi/8)(1 - cos^2 (3pi)/8)`
= `sin^2 pi/8 sin^2 (3pi)/8`
= `1/4(2sin pi/8sin (3pi)/8)^2`
= `1/4[cos(pi/8 - (3pi)/8)-cos(pi/8 + (3pi)/8)]^2`
= `1/4[cos(-pi/4)-cos(pi/2)]^2`
= `1/4(cos(pi/4) - 0)^2`
= `1/4(1/sqrt(2))^2`
= `1/4(1/2)`
= `1/8`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
In ΔABC, A + B + C = π show that
cos A + cos B – cos C = `4cos "A"/2 cos "B"/2 sin "C"/2 - 1`
In ΔABC, A + B + C = π show that
`sin^2 "A"/2 + sin^2 "B"/2 - sin^2 "C"/2 = 1 - 2cos "A"/2 cos "B"/2 sin "C"/2`
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
In ΔABC, A + B + C = π show that
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1
The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.
In a ΔABC, A : B : C = 3 : 5 : 4. Then `a + b + csqrt2` is equal to ______
The value of `[(1 - cos pi/6 + isin pi/6)/(1 - cos pi/6 - isin pi/6)]^6` = ______
If `cos "A" = 3/4,`then 32 sin`"A"/2 cos (5"A")/2` = ?
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If a ΔABC, the value of sin A + sin B + sin C is ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
If A + B = C = 180°, then the value of `cot A/2 + cot B/2 + cot C/2` will be ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.
lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.
The value of `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` is ______.