Advertisements
Advertisements
Question
In ΔABC, A + B + C = π show that
`sin^2 "A"/2 + sin^2 "B"/2 - sin^2 "C"/2 = 1 - 2cos "A"/2 cos "B"/2 sin "C"/2`
Solution
L.H.S. = `sin^2 ("A"/2) + sin^2 ("B"/2) - sin^2 ("C"/2)`
= `(1 - cos"A")/2 + (1 - cos"B")/2 -sin^2("C"/2)`
= `1/2 - 1/2cos "A" + 1/2 - 1/2 cos"B" - sin^2("C"/2)`
= `1 - 1/2(cos"A" + cos"B") - sin^2("C"/2)`
= `1 - 1/2 xx 2cos(("A" + "B")/2)*cos(("A" - "B")/2) - sin^2("C"/2)`
= `1 - cos(pi/2 - "C"/2)*cos(("A" - "B")/2) - sin^2("C"/2)` ...[∵ A + B + C = π]
= `1 - sin("C"/2)*cos(("A" - "B")/2) -sin^2("C"/2)`
= `1 - sin("C"/2)[cos(("A" - "B")/2) + sin("C"/2)]`
= `1 - sin("C"/2)[cos(("A" - "B")/2) + sin{pi/2 - (("A" + "B")/2)}]` ...[∵ A + B + C = π]
= `1 - sin("C"/2)[cos(("A" - "B")/2) + cos(("A" + "B")/2)]`
= `1 - sin("C"/2) xx 2cos((("A" + "B")/2 + ("A" - "B")/2)/2)*cos((("A" + "B")/2 - ("A" - "B")/2)/2)`
= `1 - sin("C"/2) xx 2cos("A"/2)*cos("B"/2)`
= `1 - 2("A"/2)*cos("B"/2)*sin("C"/2)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
In ΔABC, A + B + C = π show that
sin A + sin B + sin C = `4cos "A"/2 cos "B"/2 cos "C"/2 `
In ΔABC, A + B + C = π show that
`tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2tan "A"/2` = 1
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
`cos (2pi)/15 cos (4pi)/15cos (8pi)/15cos (16pi)/15 = 1/16`
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
Prove the following:
In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.
Prove the following:
In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`
The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.
In a ΔABC, A : B : C = 3 : 5 : 4. Then `a + b + csqrt2` is equal to ______
The value of `[(1 - cos pi/6 + isin pi/6)/(1 - cos pi/6 - isin pi/6)]^6` = ______
If `cos "A" = 3/4,`then 32 sin`"A"/2 cos (5"A")/2` = ?
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.
Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If A + B + C = π and sin C + sin A cos B = 0, then tan A . cot B is equal to ______.
If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.
If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.
If a ΔABC, the value of sin A + sin B + sin C is ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
If A + B = C = 180°, then the value of `cot A/2 + cot B/2 + cot C/2` will be ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.
lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.
The value of cot A cot B + cot B cot C + cot C cot A is ______.