Advertisements
Advertisements
Question
Prove the following:
In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.
Solution
sin A − cos B = cos C
∴ sin A = cos B + cos C
∴ `2sin "A"/2 cos "A"/2 = 2cos(("B" + "C")/2)cos (("B" - "C")/2)`
∴ `2sin "A"/2 cos "A"/2 = 2cos(pi/2 - "A"/2)cos(("B" - "C")/2) ...[(because "A" + "B" + "C" = pi","),(therefore ("B" + "C")/2 = pi/2 - "A"/2)]`
∴ `2sin "A"/2 cos "A"/2 = 2sin "A"/2cos (("B" - "C")/2)`
∴ `cos "A"/2 = cos (("B" - "C")/2) ....[because sin "A"/2 ≠ 0]`
∴ `"A"/2 = ("B" - "C")/2`
∴ A = B – C .…(i)
In ΔABC,
A + B + C = π
∴ B – C + B + C = π …[From (i)]
∴ 2B = π
∴ B = `pi/2`
APPEARS IN
RELATED QUESTIONS
In ΔABC, A + B + C = π show that
cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C
In ΔABC, A + B + C = π show that
sin A + sin B + sin C = `4cos "A"/2 cos "B"/2 cos "C"/2 `
In ΔABC, A + B + C = π show that
cos A + cos B – cos C = `4cos "A"/2 cos "B"/2 sin "C"/2 - 1`
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
In ΔABC, A + B + C = π show that
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Prove the following:
If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1
Prove the following:
`cos (2pi)/15 cos (4pi)/15cos (8pi)/15cos (16pi)/15 = 1/16`
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
If A and Bare supplementary angles, then `sin^2 "A"/2 + sin^2 "B"/2` = ______.
In a ΔABC, A : B : C = 3 : 5 : 4. Then `a + b + csqrt2` is equal to ______
The value of `[(1 - cos pi/6 + isin pi/6)/(1 - cos pi/6 - isin pi/6)]^6` = ______
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.
If α + β – γ = π, then sin2 α + sin2 β – sin2 γ is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.
ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If A + B + C = π and sin C + sin A cos B = 0, then tan A . cot B is equal to ______.
If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.
If A + B = C = 180°, then the value of `cot A/2 + cot B/2 + cot C/2` will be ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.