English

In ΔABC, A + B + C = π show that cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C - Mathematics and Statistics

Advertisements
Advertisements

Question

In ΔABC, A + B + C = π show that 

cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C

Sum

Solution

L.H.S. = cos 2A + cos 2B + cos 2C

= `2.cos((2"A" + 2"B")/2).cos((2"A"- 2"B")/2) + cos2"C"`

= 2 . cos (A + B) . cos ( A – B) + 2 cos2 C – 1

In ΔABC, A + B + C = π

∴ A + B = π − C

∴ cos(A + B) = cos(π − C)

∴ cos (A + B) = − cos C ....(i)

∴ L.H.S. =  – 2 . cos C . cos (A − B) + 2 cos2 C − 1 .....[from (i)]

= – 1 – 2 . cos C .  [cos (A – B) – cos C]

= – 1 – 2 . cos C . [cos (A – B) + cos (A + B)] ....[from (i)]

= –1 – 2 . cos C . (2 cos A · cos B)

= – 1 – 4 cos A · cos B · cos C

= R.H.S.

shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Exercise 3.5 [Page 54]

RELATED QUESTIONS

In ΔABC, A + B + C = π show that

sin A + sin B + sin C = `4cos  "A"/2  cos  "B"/2  cos  "C"/2 `


In ΔABC, A + B + C = π show that

cos A + cos B – cos C = `4cos  "A"/2  cos  "B"/2  sin  "C"/2 - 1`


In ΔABC, A + B + C = π show that

sin2A + sin2B − sin2C = 2 sin A sin B cos C


In ΔABC, A + B + C = π show that

`sin^2  "A"/2 + sin^2  "B"/2 - sin^2  "C"/2 = 1 - 2cos  "A"/2  cos  "B"/2 sin  "C"/2`


In ΔABC, A + B + C = π show that

`cot  "A"/2 + cot  "B"/2 + cot  "C"/2 = cot  "A"/2  cot  "B"/2 cot  "C"/2`


In ΔABC, A + B + C = π show that

cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C


Select the correct option from the given alternatives :

In ∆ABC if cot A cot B cot C > 0 then the triangle is _________


Prove the following:

If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1


Prove the following:

`cos  (2pi)/15 cos  (4pi)/15cos  (8pi)/15cos  (16pi)/15 = 1/16`


The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.


If A and Bare supplementary angles, then `sin^2  "A"/2 + sin^2  "B"/2` = ______.


In a ΔABC, A : B : C = 3 : 5 : 4. Then `a + b + csqrt2` is equal to ______


If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.


If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.


If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.


If A + B + C = 180°, then `sum tan  A/2 tan  B/2` is ______.


In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.


Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.


If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.


In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.


ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.


If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.


If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.


If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.


If A + B = C = 180°, then the value of `cot  A/2 + cot  B/2 + cot  C/2` will be ______.


If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.


If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.


lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.


The value of cot A cot B + cot B cot C + cot C cot A is ______.


The value of `tan  A/2 tan  B/2 + tan  B/2 tan  C/2 + tan  C/2 tan  A/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×