Advertisements
Advertisements
प्रश्न
In ΔABC, A + B + C = π show that
cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C
उत्तर
L.H.S. = cos 2A + cos 2B + cos 2C
= `2.cos((2"A" + 2"B")/2).cos((2"A"- 2"B")/2) + cos2"C"`
= 2 . cos (A + B) . cos ( A – B) + 2 cos2 C – 1
In ΔABC, A + B + C = π
∴ A + B = π − C
∴ cos(A + B) = cos(π − C)
∴ cos (A + B) = − cos C ....(i)
∴ L.H.S. = – 2 . cos C . cos (A − B) + 2 cos2 C − 1 .....[from (i)]
= – 1 – 2 . cos C . [cos (A – B) – cos C]
= – 1 – 2 . cos C . [cos (A – B) + cos (A + B)] ....[from (i)]
= –1 – 2 . cos C . (2 cos A · cos B)
= – 1 – 4 cos A · cos B · cos C
= R.H.S.
APPEARS IN
संबंधित प्रश्न
In ΔABC, A + B + C = π show that
sin A + sin B + sin C = `4cos "A"/2 cos "B"/2 cos "C"/2 `
In ΔABC, A + B + C = π show that
cos A + cos B – cos C = `4cos "A"/2 cos "B"/2 sin "C"/2 - 1`
In ΔABC, A + B + C = π show that
`tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2tan "A"/2` = 1
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
Prove the following:
In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.
Prove the following:
In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`
The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.
If A and Bare supplementary angles, then `sin^2 "A"/2 + sin^2 "B"/2` = ______.
`(sin20^circ +2sin40^circ)/sin70^circ=` ______.
If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.
If α + β – γ = π, then sin2 α + sin2 β – sin2 γ is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.
Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If A + B + C = π and sin C + sin A cos B = 0, then tan A . cot B is equal to ______.
If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.
If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.
The value of cot A cot B + cot B cot C + cot C cot A is ______.
The value of `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` is ______.