Advertisements
Advertisements
प्रश्न
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
उत्तर
In ΔABC,
A + B + C = `(3pi)/2`
∴ A + B = `(3pi)/2 - "C"`
∴ cos (A + B) = `cos((3pi)/2 - "C")`
= – sin C ...(i)
L.H.S. = cos 2A + cos 2B + cos 2C
= `2cos((2"A" + 2"B")/2)cos((2"A" - 2"B")/2) + cos2"C"`
= 2 cos (A + B) cos (A – B) + cos 2C
= 2 (– sin C) cos (A – B) + 1 – 2 sin2C …[From (i)]
= 1 – 2 sin C [cos (A – B) + sin C]
= 1 – 2 sin C {cos (A – B) – cos (A + B)} …[From (i)]
= `1 - 2 sin "C" xx 2sin(("A" - "B" + "A" + "B")/2)sin(("A" + "B" - "A" + "B")/2)`
= 1 – 2 sin C (2 sin A sin B)
= 1 – 4 sin A sin B sin C
= R.H.S.
APPEARS IN
संबंधित प्रश्न
In ΔABC, A + B + C = π show that
cos A + cos B – cos C = `4cos "A"/2 cos "B"/2 sin "C"/2 - 1`
In ΔABC, A + B + C = π show that
`tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2tan "A"/2` = 1
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1
Prove the following:
`cos (2pi)/15 cos (4pi)/15cos (8pi)/15cos (16pi)/15 = 1/16`
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
Prove the following:
In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.
If A and Bare supplementary angles, then `sin^2 "A"/2 + sin^2 "B"/2` = ______.
In a ΔABC, A : B : C = 3 : 5 : 4. Then `a + b + csqrt2` is equal to ______
If `cos "A" = 3/4,`then 32 sin`"A"/2 cos (5"A")/2` = ?
If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.
If α + β – γ = π, then sin2 α + sin2 β – sin2 γ is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.
ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.
The value of cot A cot B + cot B cot C + cot C cot A is ______.
The value of `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` is ______.