हिंदी

Prove the following: If A + B + C = 3π2, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove the following:

If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C

योग

उत्तर

In ΔABC,

A + B + C = `(3pi)/2`

∴ A + B = `(3pi)/2 - "C"`

∴ cos (A + B) = `cos((3pi)/2 - "C")`

= – sin C     ...(i)

L.H.S. = cos 2A + cos 2B + cos 2C

= `2cos((2"A" + 2"B")/2)cos((2"A" - 2"B")/2) + cos2"C"`

= 2 cos (A + B) cos (A – B) + cos 2C

= 2 (– sin C) cos (A – B) + 1  – 2 sin2C  …[From (i)]

= 1 – 2 sin C [cos (A – B) + sin C]

= 1 – 2 sin C {cos (A – B) –  cos (A + B)} …[From (i)]

= `1 - 2 sin "C" xx 2sin(("A" - "B" + "A" + "B")/2)sin(("A" + "B" - "A" + "B")/2)`

= 1 – 2 sin C (2 sin A sin B)

= 1 – 4 sin A sin B sin C

= R.H.S.

shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - 2 - Miscellaneous Exercise 3 [पृष्ठ ५८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q II. (19) | पृष्ठ ५८

संबंधित प्रश्न

In ΔABC, A + B + C = π show that 

cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C


In ΔABC, A + B + C = π show that

cos A + cos B – cos C = `4cos  "A"/2  cos  "B"/2  sin  "C"/2 - 1`


In ΔABC, A + B + C = π show that

sin2A + sin2B − sin2C = 2 sin A sin B cos C


In ΔABC, A + B + C = π show that

`sin^2  "A"/2 + sin^2  "B"/2 - sin^2  "C"/2 = 1 - 2cos  "A"/2  cos  "B"/2 sin  "C"/2`


In ΔABC, A + B + C = π show that

tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C


In ΔABC, A + B + C = π show that

cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C


Select the correct option from the given alternatives :

In ∆ABC if cot A cot B cot C > 0 then the triangle is _________


Prove the following:

`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8) = 1/8`


Prove the following:

In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.


Prove the following:

In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`


If A and Bare supplementary angles, then `sin^2  "A"/2 + sin^2  "B"/2` = ______.


In a ΔABC, A : B : C = 3 : 5 : 4. Then `a + b + csqrt2` is equal to ______


The value of `[(1 - cos  pi/6 + isin  pi/6)/(1 - cos  pi/6 - isin  pi/6)]^6` = ______


If `cos "A" = 3/4,`then 32 sin`"A"/2 cos  (5"A")/2` = ?


If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.


If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.


If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.


If α + β – γ = π, then sin2 α + sin2 β – sin2 γ is equal to ______.


If A + B + C = 180°, then `sum tan  A/2 tan  B/2` is ______.


Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.


If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.


If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.


If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.


If A + B + C = π and sin C + sin A cos B = 0, then tan A . cot B is equal to ______.


If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.


If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.


If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.


If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.


lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×