हिंदी

In ΔABC, A + B + C = π show that sin2A + sin2B − sin2C = 2 sin A sin B cos C - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In ΔABC, A + B + C = π show that

sin2A + sin2B − sin2C = 2 sin A sin B cos C

योग

उत्तर

We know that, sin2θ = `(1 - cos2theta)/2`

L.H.S. = sin2 A + sin2 B + sin2 C

= `(1 - cos2"A")/2 + (1 - cos2"B")/2 - sin^2"C"`

= `1/2[2 - (cos2"A" + cos2"B")] - sin^2"C"`

= `1/2 [2 - 2*cos((2"A" + 2"B")/2)*cos((2"A" - 2"B")/2)] - sin^2"C"`

= 1 – cos(A + B) cos(A – B) – sin2C

= (1 – sin2C) – cos(A + B). cos(A – B)

= cos2 C – cos(A + B). cos(A – B)

In ΔABC, A + B + C = π

∴ A + B = π – C

∴ cos(A + B) = cos(π – C)

∴ cos(A + B) = – cos C .....(i)

∴ L.H.S. = cos2 C + cos C. cos(A – B)  ...[From (i)]

∴ = cos C[cos C + cos(A – B)]

= cos C[– cos(A + B) + cos(A – B)]  ...[From (i)]

= cos C[cos (A – B) – cos(A + B)]

= cos C(2 sin A sin B)

= 2 sin A sin B cos C

= R.H.S.

shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Trigonometry - 2 - Exercise 3.5 [पृष्ठ ५४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 3 Trigonometry - 2
Exercise 3.5 | Q 4 | पृष्ठ ५४

संबंधित प्रश्न

In ΔABC, A + B + C = π show that 

cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C


In ΔABC, A + B + C = π show that

sin A + sin B + sin C = `4cos  "A"/2  cos  "B"/2  cos  "C"/2 `


In ΔABC, A + B + C = π show that

cos A + cos B – cos C = `4cos  "A"/2  cos  "B"/2  sin  "C"/2 - 1`


In ΔABC, A + B + C = π show that

`sin^2  "A"/2 + sin^2  "B"/2 - sin^2  "C"/2 = 1 - 2cos  "A"/2  cos  "B"/2 sin  "C"/2`


In ΔABC, A + B + C = π show that

`tan  "A"/2 tan  "B"/2 + tan  "B"/2 tan  "C"/2 + tan  "C"/2tan  "A"/2` = 1


In ΔABC, A + B + C = π show that

`cot  "A"/2 + cot  "B"/2 + cot  "C"/2 = cot  "A"/2  cot  "B"/2 cot  "C"/2`


In ΔABC, A + B + C = π show that

tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C


Prove the following:

If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1


Prove the following:

`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8) = 1/8`


Prove the following:

In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`


The value of `[(1 - cos  pi/6 + isin  pi/6)/(1 - cos  pi/6 - isin  pi/6)]^6` = ______


If `cos "A" = 3/4,`then 32 sin`"A"/2 cos  (5"A")/2` = ?


`(sin20^circ +2sin40^circ)/sin70^circ=` ______.


If A, B, C are the angles of ΔABC then cotA.cotB + cotB. cotC + cotC + cotA = ______.


If α + β – γ = π, then sin2 α + sin2 β – sin2 γ is equal to ______.


In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.


Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.


If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.


If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.


ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.


If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.


If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.


If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.


If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.


If A + B = C = 180°, then the value of `cot  A/2 + cot  B/2 + cot  C/2` will be ______.


lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.


The value of cot A cot B + cot B cot C + cot C cot A is ______.


The value of `tan  A/2 tan  B/2 + tan  B/2 tan  C/2 + tan  C/2 tan  A/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×