English

In ΔABC, A + B + C = π show that sin2A + sin2B − sin2C = 2 sin A sin B cos C - Mathematics and Statistics

Advertisements
Advertisements

Question

In ΔABC, A + B + C = π show that

sin2A + sin2B − sin2C = 2 sin A sin B cos C

Sum

Solution

We know that, sin2θ = `(1 - cos2theta)/2`

L.H.S. = sin2 A + sin2 B + sin2 C

= `(1 - cos2"A")/2 + (1 - cos2"B")/2 - sin^2"C"`

= `1/2[2 - (cos2"A" + cos2"B")] - sin^2"C"`

= `1/2 [2 - 2*cos((2"A" + 2"B")/2)*cos((2"A" - 2"B")/2)] - sin^2"C"`

= 1 – cos(A + B) cos(A – B) – sin2C

= (1 – sin2C) – cos(A + B). cos(A – B)

= cos2 C – cos(A + B). cos(A – B)

In ΔABC, A + B + C = π

∴ A + B = π – C

∴ cos(A + B) = cos(π – C)

∴ cos(A + B) = – cos C .....(i)

∴ L.H.S. = cos2 C + cos C. cos(A – B)  ...[From (i)]

∴ = cos C[cos C + cos(A – B)]

= cos C[– cos(A + B) + cos(A – B)]  ...[From (i)]

= cos C[cos (A – B) – cos(A + B)]

= cos C(2 sin A sin B)

= 2 sin A sin B cos C

= R.H.S.

shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Exercise 3.5 [Page 54]

RELATED QUESTIONS

In ΔABC, A + B + C = π show that 

cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C


In ΔABC, A + B + C = π show that

`tan  "A"/2 tan  "B"/2 + tan  "B"/2 tan  "C"/2 + tan  "C"/2tan  "A"/2` = 1


In ΔABC, A + B + C = π show that

tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C


In ΔABC, A + B + C = π show that

cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C


Select the correct option from the given alternatives :

In ∆ABC if cot A cot B cot C > 0 then the triangle is _________


Prove the following:

If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1


Prove the following:

`cos  (2pi)/15 cos  (4pi)/15cos  (8pi)/15cos  (16pi)/15 = 1/16`


Prove the following:

In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.


The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.


If A and Bare supplementary angles, then `sin^2  "A"/2 + sin^2  "B"/2` = ______.


`(sin20^circ +2sin40^circ)/sin70^circ=` ______.


If A + B + C = 180°, then `sum tan  A/2 tan  B/2` is ______.


In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.


Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.


If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.


In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.


If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.


ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.


If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.


If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.


If a ΔABC, the value of sin A + sin B + sin C is ______.


If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.


If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.


In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.


If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.


lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.


The value of cot A cot B + cot B cot C + cot C cot A is ______.


The value of `tan  A/2 tan  B/2 + tan  B/2 tan  C/2 + tan  C/2 tan  A/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×