English

In ΔABC, A + B + C = π show that cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C - Mathematics and Statistics

Advertisements
Advertisements

Question

In ΔABC, A + B + C = π show that

cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C

Sum

Solution

We know that, cos2θ = `(1 + cos2theta)/2`

L.H.S. = cos2A + cos2B – cos2C

= `(1 + cos2"A")/2 + (1 + cos2"B")/2 - cos^2"C"`

= `1/2[2 + (cos2"A" + cos 2"B")] - cos^2"C"`

= `1/2[2 + 2*cos((2"A" + 2"B")/2)*cos((2"A" - 2"B")/2)] - cos^2"C"`

= 1 + cos (A + B) . cos(A – B) – cos2C

In ΔABC,

A + B + C = π

∴ A + B = π – C

∴ cos(A + B) = cos(π – C)

∴ cos(A + B) = – cos C  ......(i)

∴ L.H.S. = 1 – cos C . cos(A – B) – cos2C  ...[From (i)]

= 1 – cos C . [cos(A – B) + cos C]

= 1 – cos C . [cos(A – B) – cos(A + B)] ......[From (i)]

= 1 – cos C . (2 sin A sin B)

= 1 – 2 sin A sin B cos C

= R.H.S.

shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Exercise 3.5 [Page 54]

RELATED QUESTIONS

In ΔABC, A + B + C = π show that 

cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C


In ΔABC, A + B + C = π show that

sin A + sin B + sin C = `4cos  "A"/2  cos  "B"/2  cos  "C"/2 `


In ΔABC, A + B + C = π show that

cos A + cos B – cos C = `4cos  "A"/2  cos  "B"/2  sin  "C"/2 - 1`


In ΔABC, A + B + C = π show that

sin2A + sin2B − sin2C = 2 sin A sin B cos C


In ΔABC, A + B + C = π show that

`sin^2  "A"/2 + sin^2  "B"/2 - sin^2  "C"/2 = 1 - 2cos  "A"/2  cos  "B"/2 sin  "C"/2`


In ΔABC, A + B + C = π show that

tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C


Select the correct option from the given alternatives :

In ∆ABC if cot A cot B cot C > 0 then the triangle is _________


Prove the following:

If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1


Prove the following:

`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8) = 1/8`


Prove the following:

If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C


Prove the following:

In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.


If A and Bare supplementary angles, then `sin^2  "A"/2 + sin^2  "B"/2` = ______.


In a ΔABC, A : B : C = 3 : 5 : 4. Then `a + b + csqrt2` is equal to ______


The value of `[(1 - cos  pi/6 + isin  pi/6)/(1 - cos  pi/6 - isin  pi/6)]^6` = ______


If `cos "A" = 3/4,`then 32 sin`"A"/2 cos  (5"A")/2` = ?


`(sin20^circ +2sin40^circ)/sin70^circ=` ______.


If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.


In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.


Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.


If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.


ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.


If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.


If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.


If A + B = C = 180°, then the value of `cot  A/2 + cot  B/2 + cot  C/2` will be ______.


In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.


If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.


lf A + B + C = π, then `cosA/(sinBsinC) + cosB/(sinCsinA) + cosC/(sinAsinB)` is equal to ______.


The value of cot A cot B + cot B cot C + cot C cot A is ______.


The value of `tan  A/2 tan  B/2 + tan  B/2 tan  C/2 + tan  C/2 tan  A/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×