Advertisements
Advertisements
प्रश्न
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
उत्तर
We know that, cos2θ = `(1 + cos2theta)/2`
L.H.S. = cos2A + cos2B – cos2C
= `(1 + cos2"A")/2 + (1 + cos2"B")/2 - cos^2"C"`
= `1/2[2 + (cos2"A" + cos 2"B")] - cos^2"C"`
= `1/2[2 + 2*cos((2"A" + 2"B")/2)*cos((2"A" - 2"B")/2)] - cos^2"C"`
= 1 + cos (A + B) . cos(A – B) – cos2C
In ΔABC,
A + B + C = π
∴ A + B = π – C
∴ cos(A + B) = cos(π – C)
∴ cos(A + B) = – cos C ......(i)
∴ L.H.S. = 1 – cos C . cos(A – B) – cos2C ...[From (i)]
= 1 – cos C . [cos(A – B) + cos C]
= 1 – cos C . [cos(A – B) – cos(A + B)] ......[From (i)]
= 1 – cos C . (2 sin A sin B)
= 1 – 2 sin A sin B cos C
= R.H.S.
APPEARS IN
संबंधित प्रश्न
In ΔABC, A + B + C = π show that
cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C
In ΔABC, A + B + C = π show that
sin2A + sin2B − sin2C = 2 sin A sin B cos C
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
`cos (2pi)/15 cos (4pi)/15cos (8pi)/15cos (16pi)/15 = 1/16`
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
Prove the following:
In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`
The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.
The value of `[(1 - cos pi/6 + isin pi/6)/(1 - cos pi/6 - isin pi/6)]^6` = ______
`(sin20^circ +2sin40^circ)/sin70^circ=` ______.
If A + B + C = π, then sin 2A + sin 2B + sin 2C is equal to ______.
If α + β – γ = π, then sin2 α + sin2 β – sin2 γ is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.
Let A, B and C are the angles of a triangle and `tan(A/2) = 1/3, tan(B/2) = 2/3`. Then, `tan(C/2)` is equal to ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
If A + B + C = π, then cos2 A + cos2 B + cos2 C is equal to ______.
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
If A + B + C = π and sin C + sin A cos B = 0, then tan A . cot B is equal to ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
If A + B + C = 180°, then `(sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C - 1)` is equal to ______.
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.
The value of `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` is ______.