Advertisements
Advertisements
प्रश्न
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
उत्तर
In ΔABC,
A + B + C = π
∴ A + B = π – C
∴ `tan(("A" + "B")/2) = tan((pi - "C")/2)`
∴ `tan("A"/2 + "B"/2) = tan(pi/2 - "C"/2)`
∴ `(tan "A"/2 + tan "B"/2)/(1 - tan "A"/2*tan "B"/2) = cot "C"/2`
∴ `(tan "A"/2 + tan "B"/2)/(1 - tan "A"/2*tan "B"/2) = 1/(tan "C"/2)`
∴ `tan "C"/2*(tan "A"/2 + tan "B"/2) = 1 - tan "A"/2*tan "B"/2`
∴ `tan "B"/2*tan "C"/2 + tan "A"/2*tan "C"/2 + tan "A"/2*tan "B"/2` = 1
Dividing throughout by `tan "A"/2*tan "B"/2*tan "C"/2`, we get
`1/(tan "A"/2) + 1/(tan "B"/2) + 1/(tan "C"/2) = 1/(tan "A"/2*tan "B"/2*tan "C"/2)`
∴ `cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
APPEARS IN
संबंधित प्रश्न
In ΔABC, A + B + C = π show that
cos 2A + cos 2B + cos 2C = –1 – 4 cos A cos B cos C
In ΔABC, A + B + C = π show that
cos A + cos B – cos C = `4cos "A"/2 cos "B"/2 sin "C"/2 - 1`
In ΔABC, A + B + C = π show that
`sin^2 "A"/2 + sin^2 "B"/2 - sin^2 "C"/2 = 1 - 2cos "A"/2 cos "B"/2 sin "C"/2`
In ΔABC, A + B + C = π show that
`tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2tan "A"/2` = 1
In ΔABC, A + B + C = π show that
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
`cos (2pi)/15 cos (4pi)/15cos (8pi)/15cos (16pi)/15 = 1/16`
Prove the following:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8) = 1/8`
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
Prove the following:
In any triangle ABC, sin A − cos B = cos C then ∠B = `pi/2`.
Prove the following:
In ∆ABC, ∠C = `(2pi)/3`, then prove that cos2A + cos2B − cos A cos B = `3/4`
The area of the Δ ABC is `10sqrt3` cm2, angle B is 60° and its perimeter is 20 cm , then l(AC) = ______.
If A and Bare supplementary angles, then `sin^2 "A"/2 + sin^2 "B"/2` = ______.
The value of `[(1 - cos pi/6 + isin pi/6)/(1 - cos pi/6 - isin pi/6)]^6` = ______
`(sin20^circ +2sin40^circ)/sin70^circ=` ______.
If α + β – γ = π, then sin2 α + sin2 β – sin2 γ is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C is equal to ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.
If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.
If a ΔABC, the value of sin A + sin B + sin C is ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
If A + B = C = 180°, then the value of `cot A/2 + cot B/2 + cot C/2` will be ______.
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.
The value of cot A cot B + cot B cot C + cot C cot A is ______.
The value of `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` is ______.