Advertisements
Advertisements
Question
In ΔABC, A + B + C = π show that
`cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
Solution
In ΔABC,
A + B + C = π
∴ A + B = π – C
∴ `tan(("A" + "B")/2) = tan((pi - "C")/2)`
∴ `tan("A"/2 + "B"/2) = tan(pi/2 - "C"/2)`
∴ `(tan "A"/2 + tan "B"/2)/(1 - tan "A"/2*tan "B"/2) = cot "C"/2`
∴ `(tan "A"/2 + tan "B"/2)/(1 - tan "A"/2*tan "B"/2) = 1/(tan "C"/2)`
∴ `tan "C"/2*(tan "A"/2 + tan "B"/2) = 1 - tan "A"/2*tan "B"/2`
∴ `tan "B"/2*tan "C"/2 + tan "A"/2*tan "C"/2 + tan "A"/2*tan "B"/2` = 1
Dividing throughout by `tan "A"/2*tan "B"/2*tan "C"/2`, we get
`1/(tan "A"/2) + 1/(tan "B"/2) + 1/(tan "C"/2) = 1/(tan "A"/2*tan "B"/2*tan "C"/2)`
∴ `cot "A"/2 + cot "B"/2 + cot "C"/2 = cot "A"/2 cot "B"/2 cot "C"/2`
APPEARS IN
RELATED QUESTIONS
In ΔABC, A + B + C = π show that
cos A + cos B – cos C = `4cos "A"/2 cos "B"/2 sin "C"/2 - 1`
In ΔABC, A + B + C = π show that
sin2A + sin2B − sin2C = 2 sin A sin B cos C
In ΔABC, A + B + C = π show that
`sin^2 "A"/2 + sin^2 "B"/2 - sin^2 "C"/2 = 1 - 2cos "A"/2 cos "B"/2 sin "C"/2`
In ΔABC, A + B + C = π show that
`tan "A"/2 tan "B"/2 + tan "B"/2 tan "C"/2 + tan "C"/2tan "A"/2` = 1
In ΔABC, A + B + C = π show that
tan 2A + tan 2B + tan 2C = tan 2A tan 2B tan 2C
In ΔABC, A + B + C = π show that
cos2A +cos2B – cos2C = 1 – 2 sin A sin B cos C
Select the correct option from the given alternatives :
In ∆ABC if cot A cot B cot C > 0 then the triangle is _________
Prove the following:
If sin α sin β − cos α cos β + 1 = 0 then prove cot α tan β = −1
Prove the following:
`cos (2pi)/15 cos (4pi)/15cos (8pi)/15cos (16pi)/15 = 1/16`
Prove the following:
If A + B + C = `(3pi)/2`, then cos 2A + cos 2B + cos 2C = 1 − 4 sin A sin B sin C
If A and Bare supplementary angles, then `sin^2 "A"/2 + sin^2 "B"/2` = ______.
If `cos "A" = 3/4,`then 32 sin`"A"/2 cos (5"A")/2` = ?
If A + B = C, then cos2 A + cos2 B + cos2 C – 2 cos A cos B cos C is equal to ______.
If A + B + C = 180°, then `sum tan A/2 tan B/2` is ______.
In a ΔABC, `cos((B + 2C + 3A)/2) + cos((A - B)/2)` is ______.
If A + B + C = π, then sin 2A + sin 2B – sin 2C is equal to ______.
In a ΔABC, if cos A cos B cos C = `(sqrt(3) - 1)/8` and sin A sin B sin C = `(3 + sqrt(3))/8`, then the angles of the triangle are ______.
ΔABC is a right angled isosceles triangle with ∠B = 90°. If D is a point on AB, ∠CDB = 15° and AD = 35 cm, then CD is equal to ______.
If x + y + z = 180°, then cos 2x + cos 2y – cos 2z is equal to ______.
If A + B + C = π(A, B, C > 0) and the ∠C is obtuse, then ______.
If a ΔABC, the value of sin A + sin B + sin C is ______.
If A + B + C = 270°, then cos 2A + cos 2B + cos 2C + 4 sin A sin B sin C is equal to ______.
If A, B, C are the angles of a triangle, then sin2 A + sin2 B + sin2 C – 2 cos A cos B cos C is equal to ______.
In any ΔABC, if tan A + tan B + tan C = 6 and tan A tan B = 2, then the values of tan A, tan B and tan C are ______.
If cos A = cos B cos C and A + B + C = π, then the value of cot B cot C is ______.
The value of cot A cot B + cot B cot C + cot C cot A is ______.
The value of `tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2` is ______.