Advertisements
Advertisements
प्रश्न
Prove the following:
tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A = cot A
उत्तर
L.H.S. = tan A + 2 tan 2A + 4 tan 4A + 8 cot 8A
= `tan"A" + 2tan2"A" + 4tan4"A" + 8/(tan8"A")`
= `tan"A" + 2tan2"A" + 4tan4"A" + (8(1 - tan^2 4"A"))/(2tan4"A") ...[because tan2theta = (2tantheta)/(1 - tan^2theta)]`
= `tan"A" + 2tan2"A" + (8tan^2 4"A" + 8 - 8tan^2 4"A")/(2tan4"A")`
= `tan"A" + 2tan2"A" + 4/(tan4"A")`
= `tan"A" + 2tan2"A" + (4(1 - tan^2 2"A"))/(2tan2"A")`
= `tan"A" + (4tan^2 2"A" + 4 - 4tan^2 2"A")/(2tan2"A")`
= `tan"A" + 2/(tan2"A")`
= `tan"A" + (2(1 - tan^2"A"))/(2tan"A")`
= `(2tan^2"A" + 2 - 2tan^2"A")/(2tan"A")`
= `1/tan"A"`
= cot A
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
sin [(n + 1)A]. sin [(n + 2)A] + cos [(n + 1)A]. cos [(n + 2)A] = cos A
Prove the following:
`sqrt(2)cos (pi/4 - "A")` = cos A + sin A
Prove the following:
`(cos15^circ - sin15^circ)/(cos15^circ + sin15^circ) = 1/sqrt(3)`
If tan A = `5/6, tan "B" = 1/11`, prove that A + B = `pi/4`
Select the correct option from the given alternatives :
If tan A – tan B = x and cot B – cot A = y, then cot (A – B) = _____
Select the correct option from the given alternatives :
The numerical value of tan 20° tan 80° cot 50° is equal to ______.
Prove the following:
If sin 2A = λsin 2B then prove that `(tan("A" + "B"))/(tan("A" - "B")) = (lambda + 1)/(lambda - 1)`
Prove the following:
`(2cos2"A" + 1)/(2cos2"A" - 1)` = tan(60° + A) tan(60° − A)
Prove the following:
3tan610° – 27 tan410° + 33tan210° = 1
cos (36° - A) cos (36° + A) + cos(54° + A) cos (54° - A) = ?
If x cos θ + y sin θ = 5, x sin θ − y cos θ = 3, then the value of x2 + y2 = ____________.
`sqrt3 sin15^circ + cos15^circ` = ______
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
If `(cos(x - y))/(cos(x + y)) = ("a" + "b")/("a" - "b")`, then cot x × cot y is equal to ______.
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
The value of cos 15° is ______.
The value of `tan 40^circ + tan 20^circ + sqrt(3) tan 20^circ tan 40^circ` is ______.
If cos (α + β) = `4/5` and sin (α – β) = `5/13`, where `0 ≤ α, β ≤ π/4`, then tan 2α is equal to ______.
If A + B = 45°, then (cot A – 1) (cot B – 1) is equal to ______.
If tan α = k cot β, then `(cos(α - β))/(cos(α + β))` is equal to ______.
If cos θ = `8/17` and θ lies in the 1st quadrant, then the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ) is ______.
The expression cos2(A – B) + cos2 B – 2 cos(A – B) cos A cos B is ______.
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
If `π/2 < α < π, π < β < (3π)/2`; sin α = `15/17` and tan β = `12/5`, then the value of sin(β – α) is ______.
cos2 76° + cos2 16° – cos 76° cos 16° is equal to ______.
The value of `sin π/16 sin (3π)/16 sin (5π)/16 sin (7π)/16` is ______.
The value of cot 70° + 4 cos 70° is ______.
If A, B, C, D are the angles of a cyclic quadrilateral, then cos A + cos B + cos C + cos D is equal to ______.
If ABCD is a cyclic quadrilateral, then the value of cos A – cos B + cos C – cos D is equal to ______.
cos(36° − A) cos(36° + A) + cos(54° + A) cos(54° − A) = ______.
`1/3(sqrt(3) cos 23^circ - sin 23^circ)` is equal to ______.
The value of tan 3A – tan 2A – tan A is ______.